Abstract:
A cooled mirror particularly useful in lasers conducts a cooling fluid through a plurality of parallel paths to impinge on the underface of the reflector member at a plurality of discrete points thereon. The velocity of the cooling fluid is increased such that it issues in the form of a high-velocity jet at each of the discrete impingement points on the underface of the reflector member. The reflector member is thin and flexible and is supported from a rigid base by a plurality of spaced supporting elements in such manner so as to reduce bending of the reflector member by thermal deformation.
Abstract:
A natural gas reformer comprising a stack of thermally conducting plates interspersed with catalyst plates and provided with internal or external manifolds for reactants. The catalyst plate is in intimate thermal contact with the conducting plates so that its temperature closely tracks the temperature of the thermally conducting plate, which can be designed to attain a near isothermal state in-plane to the plate. One or more catalysts may be used, distributed along the flow direction, in-plane to the thermally conducting plate, in a variety of optional embodiments. The reformer may be operated as a steam reformer or as a partial oxidation reformer. When operated as a steam reformer, thermal energy for the (endothermic) steam reforming reaction is provided externally by radiation and/or conduction to the thermally conducting plates. This produces carbon monoxide, hydrogen, steam and carbon dioxide. When operated as a partial oxidation reformer, a fraction of the natural gas is oxidized assisted by the presence of a combustion catalyst and reforming catalyst. This produces carbon monoxide, hydrogen, steam and carbon dioxide. Because of the intimate thermal contact between the catalyst plate and the conducting plates, no excessive temperature can develop within the stack assembly. Details of the plate design may be varied to accommodate a variety of manifolding embodiments providing one or more inlets and exit ports for introducing, pre-heating and exhaust the reactants.
Abstract:
A turbine power system that includes a compressor for compressing a first medium, and an electrochemical converter in communication with the compressor and adapted to receive the first medium and a second medium. The converter is configured to allow an electrochemical reaction between the first and second mediums, thereby generating electricity and producing exhaust having a selected elevated temperature. The power system further includes a turbine in fluid communication with the electrochemical converter and adapted to receive the converter exhaust, such that the turbine converts the electrochemical converter exhaust into rotary energy and electricity. The system can further include a steam generator and a steam turbine that produces electricity. The electrochemical converter is utilized herein as an electrochemical combustor-replacement (ECCR) or as a fuel cell for combustor-replacement (FCCR).
Abstract:
An optical resonator for a laser oscillating apparatus has an arrangement of folding mirrors facing one another across the lasing gas medium that radiates the laser beam. The arrangement includes a pair of reflecting surfaces that are approximately orthogonal to one another and effectively face the lasing gas medium as a whole. Also, the laser beam that is incident from the lasing gas medium is caused to be reflected successively from both reflecting surfaces to be emitted in the direction of the lasing gas medium.
Abstract:
Apparatus for establishing and maintaining a stable electrical discharge across a stream of gas flowing through a gas flow channel, particularly useful in high-power lasers, comprises a plurality of modular elements each including a plurality of electrodes, a ballast impedance for each electrode, and a cooling element for each electrode in thermal communication with the electrode and its ballast impedance, all embedded within a block of insulating material. The ballast impedances for the electrodes at the downstream side of the gas flow channel have lower impedance values than those for the electrodes at the upstream side of the channel so as to compensate for the lower impedance of the gas flowing through the channel at the downstream side and to produce a substantially constant voltage across the various portions of the channels.
Abstract:
A high-power flowing-gas laser comprises a laser channel folded to include at least two legs angularly disposed to each other in a common plane and having a single folding mirror between them such that the laser rays through one leg, on the upstream side thereof with respect to the gas flowing transversely across that leg, are reflected by the folding mirror so as to be transposed to the downstream side of the other leg with respect to the gas flowing transversely across the other leg. A number of embodiments are described wherein the laser channel is folded to include four or other even number of legs according to a polygonal configuration, there being a separate flowing gas channel for each leg, all the gas channels directing the gas flow radially inwardly to a common collection region. Among the advantages provided by the described constructions are compensation for phase distortion and amplitude variations, and maximum laser channel length and laser output for a given system size and volume.
Abstract:
A natural gas reformer comprising a stack of thermally conducting plates interspersed with catalyst plates and provided with internal or external manifolds for reactants. The catalyst plate is in intimate thermal contact with the conducting plates so that its temperature closely tracks the temperature of the thermally conducting plate, which can be designed to attain a near isothermal state in-plane to the plate. One or more catalysts may be used, distributed along the flow direction, in-plane to the thermally conducting plate, in a variety of optional embodiments. The reformer may be operated as a steam reformer or as a partial oxidation reformer. When operated as a steam reformer, thermal energy for the (endothermic) steam reforming reaction is provided externally by radiation and/or conduction to the thermally conducting plates. This produces carbon monoxide, hydrogen, steam and carbon dioxide. When operated as a partial oxidation reformer, a fraction of the natural gas is oxidized assisted by the presence of a combustion catalyst and reforming catalyst. This produces carbon monoxide, hydrogen, steam and carbon dioxide. Because of the intimate thermal contact between the catalyst plate and the conducting plates, no excessive temperature can develop within the stack assembly. Details of the plate design may be varied to accommodate a variety of manifolding embodiments providing one or more inlets and exit ports for introducing, pre-heating and exhaust the reactants.
Abstract:
A turbine power system that includes a compressor for compressing a first medium, and an electrochemical converter in communication with the compressor and adapted to receive the first medium and a second medium. The converter is configured to allow an electrochemical reaction between the first and second mediums, thereby generating electricity and producing exhaust having a selected elevated temperature. The power system further includes a turbine in fluid communication with the electrochemical converter and adapted to receive the converter exhaust, such that the turbine converts the electrochemical converter exhaust into rotary energy and electricity. The system can further include a steam generator and a steam turbine that produces electricity. The electrochemical converter is utilized herein as an electrochemical combustor-replacement (ECCR) or as a fuel cell for combustor-replacement (FCCR).
Abstract:
A heat exchanging apparatus including a working fluid and a structure for exchanging heat between the working fluid and an external environment. The structure includes at least one wall element having an external surface exposed to the external environment and an internal surface exposed to the working fluid such that heat can be exchanged between the environment and the working fluid by conductive heat transfer through the wall element. The apparatus further includes a reservoir element for providing a reservoir for the working fluid and a distribution element for distributing the working fluid along the wall element to provide isothermal heat exchange between the working fluid and the external environment. In one embodiment, the structure can be a double lumen tubular structure having an inner lumen which provides a reservoir for the working fluid, and an lumen where heat is exchanged between the working fluid and an external environment. The inner tube can be a porous structure with a plurality of pores that uniformly distribute the working fluid to the outer-lumen.
Abstract:
A laser oscillating apparatus has an elongate housing, a pair of discharge electrodes arranged along the longitudinal direction in the interior of the laser housing, and first and second planar folding mirrors arranged at either end in the longitudinal direction of the lasing cavity formed by the discharge electrodes, with the reflecting surfaces of the folding mirror facing the lasing cavity. The folding mirrors are placed with their reflecting surfaces inclined by a predetermined angle with respect to one another. Also in the laser housing are a primary mirror and an output mirror, each of which is arranged with a predetermined spacing in the neighborhood of one of the folding mirrors. At least the primary mirror and the output mirror are arranged so that their attitude is adjustable from the outside of the laser housing.