Abstract:
Provided is a livestock house management system for managing a rearing environment of livestock. The livestock house management system includes an environment monitoring sensor unit installed in each of divided zones within a livestock house and configured to measure an environment variable indicating a state of a rearing environment of each of the zones, analyze the measured environment variable, and independently generate a command corresponding to an abnormal situation of each of the zones when the abnormal situation of each of the zones is checked, and a livestock house facility control unit installed in each of the zones and configured to receive the command from the environment monitoring sensor unit installed in a corresponding zone according to a wired or wireless communication scheme, and drive a livestock house facility according to the received command to independently control a rearing environment of each of the zones.
Abstract:
The present invention relates to an image collection sensor device, an unmanned counting edge computing system and method using the same, and more particularly, to an image collection sensor device capable of providing a high-precision unmanned counting service using a low-power wireless image collection sensor device operated by a battery by analyzing unmanned counting result data that counts the number of persons included in image data, determining image sensor parameters of the image data, and adjusting a collection cycle and collection image quality of image sensor data according to environmental changes in a sensing area.
Abstract:
Provided are an apparatus and method for adjusting an optical axis. In the apparatus, an iris diaphragm and a quadrant photodiode (QPD) are used to align optical axes of an optical system of the apparatus so that optical transmission efficiency between an optical transmitter and an optical receiver can be increased. Since a hole of the iris diaphragm can be adjusted to be small, a beam larger than a light-receiving area of the QPD can be included in the light-receiving area, and optical axis alignment is facilitated accordingly. When the QPD and the iris diaphragm are applied to the apparatus, it is possible to simultaneously perform data transmission, tracking, and optical axis alignment. An optical fiber end surface and optical axes of lenses arranged in parallel are aligned in the apparatus so that alignment between two terminals can be easy and reception efficiency can be increased.
Abstract:
Provided are a multi-channel optical subassembly structure allowing an optical unit including a light source photodetector chip to be fixed through an alignment jig after active alignment is performed on an individual or single light source photodetector chip by using the alignment jig capable of electrical coupling and one electrode pad and the other electrode pad of a thermoelectric element, which are wire-bonded, capable of performing active alignment for each light source photodetector chip, that is, for each channel, capable of replacing the optical unit and the alignment jig when a problem occurs in some or all channels, capable of improving optical coupling efficiency for each channel, and capable of addressing a time-consuming and economically expensive work in which an optical subassembly is discarded when some channels fail, and a method of packaging the structure.
Abstract:
Provided is an apparatus for generating an incident light, the apparatus including an input light generator configured to generate an input light by changing an intensity of an operational signal at intervals of a predetermined period, a filter configured to change a wavelength of the input light through an electrical change, and a light amplifier configured to amplify an intensity of the input light having the changed wavelength to emit an incident light.
Abstract:
Disclosed herein are an astral lamp device having detachable and angle-controllable LED module blocks and a method of setting the same. The astral lamp device having detachable and angle-controllable LED module blocks, includes a plurality of LED module blocks having one end attached to and disposed on a central frame; and an angle control part configured to control an angle of the LED module block attached to the central frame.
Abstract:
Provided are a system and method for digital holographic imaging which are not affected by external vibrations. The system for digital holographic imaging includes a light source and optical system section configured to split generated beams and including a sample through which the beams pass, a lens, and a grating disposed behind the lens; an object signal acquisition section configured to receive the split beams and acquire an interference signal; and an image processor configured to acquire a three-dimensional (3D) image of an object by using the acquired interference signal.
Abstract:
Disclosed is an optical device. The optical device includes: a first WDM filter for dividing an optical signal transmitted through and reflected from a measured subject into an optical signal of an infrared band and a first optical signal through wavelength division multiplexing; a first LC tunable wavelength filter disposed at an output end of the first WDM filter, and selectively filtering the optical signal of the infrared band; a second WDM filter for dividing the first optical signal into an optical signal of a first visible light band and a second optical signal through wavelength division multiplexing; and a second LC tunable wavelength filter disposed at an output end of the second WDM filter, and selectively filtering the optical signal of the first visible light band.
Abstract:
An integrated optical measurement apparatus includes: an optical signal transmission unit varying a wavelength of an optical signal to be transmitted and controlling power of the optical signal such that the wavelength is varied to be output to the outside; an optical signal receiving unit measuring power and a wavelength from the optical signal input from the outside; and a controller controlling the optical signal transmission unit and the optical signal receiving unit.
Abstract:
Disclosed is a polarimetric-analysis-type dual liquid crystal (LC) wavelength filter module capable of miniaturization or optical integration in the form of a package. The polarimetric-analysis-type dual liquid crystal (LC) wavelength filter module includes a beam displacer disposed on a propagation path of light of an unpolarized light source for emitting unpolarized light and configured to generate two orthogonal polarization components corresponding to two polarization axes from the light of the unpolarized light source such that the polarization components are separated at a predetermined angle, a half-wavelength retarder disposed apart at a rear end of the beam displacer along the light propagation path, and a dual LC wavelength-tunable filter having two LC wavelength-tunable filters that overlap with a gap therebetween to detect light intensities of first polarized light of a Transverse Electric (TE) mode that is directly delivered from the beam displacer and second polarized light of the TE mode that is transmitted through or via the half-wavelength retarder and then converted.