Abstract:
Provided is an optical module. The optical module includes: an optical bench having a first trench of a first depth and a second trench of a second depth that is lower than the first depth; a lens in the first trench of the optical bench; at least one semiconductor chip in the second trench of the optical bench; and a flexible printed circuit board covering an upper surface of the optical bench except for the first and second trenches, wherein the optical bench is a metal optical bench or a silicon optical bench.
Abstract:
Provided is an optical device. The optical device includes a substrate having a waveguide region and a mounting region, a planar lightwave circuit (PLC) waveguide including a lower-clad layer and an upper-clad layer on the waveguide region of the substrate and a platform core between the lower-clad layer and the upper-clad layer, a terrace defined by etching the lower-clad layer on the mounting region of the substrate, the terrace including an interlocking part, an optical active chip mounted on the mounting region of the substrate, the optical active chip including a chip core therein, and a chip alignment mark disposed on a mounting surface of the optical active chip. The optical active chip is aligned by interlocking between the interlocking part of the terrace and the chip alignment mark of the optical active chip and mounted on the mounting region.
Abstract:
Provided is a transistor outline (TO)-CAN type optical module and an optical transmission apparatus including the same. The optical module includes a stem, a thermo-electric cooler (TEC) on the stem, a first sub-mount on the TEC, an optical element on the first sub-mount, a plurality of electrode lead wirings inserted from an outside to an inside of the stem and disposed adjacent to the TEC and the optical element, a second sub-mount between the electrode lead wirings and the optical element, radio frequency (RF) transmission lines on the second sub-mount, a plurality of bonding wires connecting the RF transmission lines and the optical element, and the RF transmission lines and the electrode lead wirings, and an impedance matching unit disposed around the RF transmission lines and the electrode lead wirings, and controlling impedances of the RF transmission lines and the electrode lead wires.
Abstract:
Disclosed is an optical transmitter module including a directly modulated laser transmitter based on a directly modulated laser (DML) and an arrayed waveguide grating (AWG) chip that is vertically polished. The directly modulated laser transmitter includes a directly modulated laser chip array including one or more directly modulated laser chips, an impedance matching circuit that allows each of the one or more directly modulated laser chips to operate at a critical speed of 100 Gbps per channel or higher, and a radio frequency-flexible printed circuit board (RF-FPCB) that transmits a radio frequency (RF) modulating signal to the directly modulated laser chip array. The arrayed waveguide grating chip includes an optical waveguides that transfer multi-channel optical signals and a wavelength multiplexer that multiplexes the multi-channel optical signals. The directly modulated laser transmitter and the arrayed waveguide grating chip are spaced apart from each other and are optically coupled in chip-to-chip.
Abstract:
Provided is an optical transmitter module. The optical transmitter module includes a substrate, a ground layer disposed on the substrate, an electro-absorption modulated laser (EML) chip disposed on the ground layer to generate an modulated optical signal, a ground structure disposed on the EML chip and electrically connected to the ground layer, a matching resistor disposed on the ground structure, and a first bonding wire disposed between the EML chip and the matching resistor to electrically connect the EML chip to the matching resistor.
Abstract:
A method of operating a wavelength swept source apparatus includes generating a single mode light, and generating a basic optical comb including light rays having identical frequency differences with adjacent light rays by modulating the generated single mode light. The method further includes generating other optical combs that include the same number of light rays as that of light rays of the optical comb that has a frequency band different from that of the basic optical comb, and is distributed in a frequency band wider than that in which the basic optical comb is distributed, by modulating the light rays of the basic optical comb. The light rays of the basic optical comb and the light rays included in the other optical combs are sequentially emitted according to frequencies of the light rays of the basic optical comb and the light rays included in the other optical combs.
Abstract:
Provided is an optical module. The optical module includes: an optical bench having a first trench of a first depth and a second trench of a second depth that is lower than the first depth; a lens in the first trench of the optical bench; at least one semiconductor chip in the second trench of the optical bench; and a flexible printed circuit board covering an upper surface of the optical bench except for the first and second trenches, wherein the optical bench is a metal optical bench or a silicon optical bench.