Abstract:
A reorganizable neural network computing device is provided. The computing device includes a data processing array unit including a plurality of operators disposed at locations corresponding to a row and a column. One or more chaining paths which transfer the first input data from the operator of the first row of the data processing array to the operator of the second row are optionally formed. The plurality of first data input processors of the computing device transfer the first input data for a layer of the neural network to the operators along rows of the data processing array unit, and the plurality of second data input processors of the computing device transfer the second input data to the operators along the columns of the data processing array.
Abstract:
Provided is an analog-to-digital converting device. The analog-to-digital converting device may include a determination circuit that determination whether a reference digital signal or a determination digital signal obtained by conversion of a reference voltage or a determination voltage matches a test pattern for the reference voltage, and it is possible to monitor whether the analog-to-digital converting device normally operates, according to whether there is matching.
Abstract:
Provided is a sensing circuit for recognizing a movement including: at least one light emitting device outputting light; at least one light receiving device receiving the light reflected by an object on the light emitting device and generating a plurality of current signals proportional to an amount of incident light; a signal conversion unit converting the plurality of current signals into a plurality of digital signals; a recognition unit measuring a synthetic digital signal to determine whether an object moves by receiving the plurality of current signals; and a control unit controlling the recognition unit, wherein the recognition unit generates a clock signal for the synthetic digital signal greater than a critical value and measures a count generated by the clock signal; and the control unit determines whether the object moves through a comparison of the count and a reference value.
Abstract:
Disclosed is a parallel processor. The parallel processor includes a processing element array including a plurality of processing elements arranged in rows and columns, a row memory group including row memories corresponding to rows of the processing elements, a column memory group including column memories corresponding to columns of the processing elements, and a controller to generate a first address and a second address, to send the first address to the row memory group, and to send the second address to the column memory group. The controller supports convolution operations having mutually different forms, by changing a scheme of generating the first address.
Abstract:
Provided is a neural network accelerator which performs a calculation of a neural network provided with layers, the neural network accelerator including a kernel memory configured to store kernel data related to a filter, a feature map memory configured to store feature map data which are outputs of the layers, and a Processing Element (PE) array including PEs arranged along first and second directions, wherein each of the PEs performs a calculation using the feature map data transmitted in the first direction from the feature map memory and the kernel data transmitted in the second direction from the kernel memory, and transmits a calculation result to the feature map memory in a third direction opposite to the first direction.
Abstract:
Provided are an object recognition device, an autonomous driving system including the same, and an object recognition method using the object recognition device. The object recognition device includes an object frame information generation unit, a frame analysis unit, an object priority calculator, a frame complexity calculator, and a mode control unit. The object frame information generation unit generates object frame information based on a mode control signal. The frame analysis unit generates object tracking information based on object frame information. The object priority calculator generates based on object tracking information. The frame complexity calculator generates a frame complexity based on object tracking information. The mode control unit generates a mode control signal for adjusting an object recognition range and a calculation amount of the object frame information generation unit based on the priority information, the frame complexity, and the resource occupation state.
Abstract:
The control apparatus of the present invention determines a motion state of an object and provides an IRLED switching control signal suitable for the motion state in an apparatus for sensing/recognizing a motion of the object by using an infrared light-emitting diode (IRLED) and a photodiode (PD). Such a control apparatus is an LED driving control apparatus, and includes a motion velocity generating unit, a previous section average value generating unit, a state value generating unit, a control unit, and an LED switching control signal generating unit.
Abstract:
Provided is an image registration device including a first feature vector magnitude calculating unit calculating magnitudes of feature vectors corresponding to any one first feature point among feature points of a reference image to create a first magnitude value, a second feature vector magnitude calculating unit calculating magnitudes of feature vectors corresponding to any one second feature point among feature points of a target image to create a second magnitude value, a magnitude difference calculating unit receiving the first and second magnitude values and calculating a difference between the received first and second magnitude values to create a third magnitude value, a first threshold value creating unit creating a first threshold value on the basis of the first magnitude value and a magnitude ratio, and a magnitude difference determining unit receiving the third magnitude value and the first threshold value, and determining a magnitude difference.