Abstract:
Disclosed is an operating method of a vehicle control apparatus controlling autonomous driving based on a vehicle external object including performing primary object detection based on a first vehicle external image received from a camera to obtain first object information, setting a first reflective area for reflection light based on the first object information, generating a second vehicle external image, in which a reflective image inside the first reflective area is removed from the first vehicle external image, using pixel values inside the first reflective area, performing secondary object detection based on the second vehicle external image to obtain second object information, determining reliability of the second object information based on information about the reflective image and the second object information, and controlling the autonomous driving of the vehicle based on the second object information when the reliability of the second object information is higher than a setting value.
Abstract:
Provided is a sensing circuit for recognizing a movement including: at least one light emitting device outputting light; at least one light receiving device receiving the light reflected by an object on the light emitting device and generating a plurality of current signals proportional to an amount of incident light; a signal conversion unit converting the plurality of current signals into a plurality of digital signals; a recognition unit measuring a synthetic digital signal to determine whether an object moves by receiving the plurality of current signals; and a control unit controlling the recognition unit, wherein the recognition unit generates a clock signal for the synthetic digital signal greater than a critical value and measures a count generated by the clock signal; and the control unit determines whether the object moves through a comparison of the count and a reference value.
Abstract:
A convolutional operation device for performing convolutional neural network processing includes an input sharing network including first and second input feature map registers configured to shift each input feature map, which is inputted in row units, in a row or column direction and output the shifted input feature map and arranged in rows and columns, a first MAC array connected to the first input feature map registers, an input feature map switching network configured to select one of the first and second input feature map registers, a second MAC array connected to one selected by the input feature map switching network among the first and second input feature map registers, and an output shift network configured to shift the output feature map from the first MAC array and the second MAC array to transmit the shifted output feature map to an output memory.
Abstract:
Provided is DC-DC converter including a first inductor configured to output a first inductor current based on an input voltage, a second inductor configured to output a second inductor current based on the input voltage, an output network unit configured to provide a first output voltage to a first output terminal and provide a second output voltage to a second output terminal based on the first inductor current or the second inductor current, a controller configured to determine cross-regulation with respect to the first output terminal and the second output terminal and generate a mode signal based on the determination, and an inductor network unit configured to connect the first inductor and the second inductor based on the mode signal or electrically isolate the first inductor and the second inductor.
Abstract:
The present disclosure relates to a frame grabber, an image processing system, and an image processing method. A frame grabber according to an embodiment of the inventive concept includes a plurality of decoders, a plurality of image controllers, a plurality of memories, a synchronization controller, and a synchronization memory. The plurality of decoders generate a plurality of image data by decoding a plurality of image signals. The plurality of image controllers generate a plurality of pixel data and a plurality of frame information data on the basis of the plurality of image data. The plurality of memories store the plurality of pixel data. The synchronization controller receives the plurality of frame information data, and generates synchronization data on the basis of the plurality of frame information data. The synchronization memory stores the frame information data and the synchronization data.
Abstract:
Provided is a motor driving circuit which transmits a driving signal to a motor, including a gate driver generating the driving signal corresponding to a pulse width modulation signal, a pulse width modulation signal generator generating the pulse width modulation signal according to Hall sensor signals received from Hall sensors mounted in the motor, a current sensor measuring a link current provided to the gate driver, a low pass filter outputting a filter current that high frequency components are removed from the measured link current, and a minimum power consumption estimating unit generating a lead angle according to a start signal with reference to the filter current, wherein the pulse with modulating signal is changed according to the lead angle.
Abstract:
Provided is a motor including a motor driving unit outputting a plurality of switching signals and any one of estimated three-phase voltages, in response to a control signal and a compensated position signal; a pulse width modulation (PWM) inverter outputting three-phase voltages and any one of estimated three-phase currents corresponding to the one estimated phase voltage, in response to the plurality switching signals; a motor unit operating based on the three-phase voltages and outputting a position signal according to the operation; and a position signal compensation unit receiving the position signal, the estimated phase voltage and the estimated phase current, detecting a phase difference between the estimated phase voltage and the estimated phase current and compensating for the position signal in response to the detected phase difference.
Abstract:
Provided is a data generation device for generating input data to be inputted to a parallel processing device. The data generation device includes: a controller configured to output padding data; and a data processing device configured to receive original data and to generate the input data in which at least a portion of the original data is padded with the padding data. The data processing device includes: a first multiplexer configured to receive the padding data and the original data; a register configured to store data outputted from the first multiplexer; and a second multiplexer configured to receive data outputted from the first multiplexer and data stored in the register.
Abstract:
Provided is a battery module and an electronic device, the battery module including a first battery, a second battery, a correcting element unit, and a battery controller, wherein the first battery includes a first internal resistance and provides a first current, the second battery is connected to the first battery, includes a second internal resistance and provides a second current, the correction element unit is connected to the first battery or the second battery and includes a variable resistor or a current source, the battery controller controls the correction element unit such that the first current is identical to the second current on a basis of a difference between values of the first internal resistance and the second internal resistance, and therefore performances of the first battery and the second battery are prevented from being deteriorated.
Abstract:
Provided is an operating method of a road guide system including collecting traffic information around a portable device through the portable device; delivering, to a server, the traffic information collected from the portable device and travel path information; updating the delivered travel path information based on the delivered traffic information; and feeding back the updated travel path information from the server to the portable device.