Abstract:
A phase-change memory may have a tapered lower electrode coated with an insulator. The coated, tapered electrode acts as a mask for a self-aligned trench etch to electrically separate adjacent wordlines. In some embodiments, the tapered lower electrode may be formed over a plurality of doped regions, and isotropic etching may be used to taper the electrode as well as part of the underlying doped regions.
Abstract:
A memory cell including a phase-change material may have reduced leakage current. The cell may receive signals through a buried wordline in one embodiment. The buried wordline may include a sandwich of a more lightly doped N type region over a more heavily doped N type region over a less heavily doped N type region. As a result of the configuration of the N type regions forming the buried wordline, the leakage current of the buried wordline to the substrate under reverse bias conditions may be significantly reduced.
Abstract:
A phase-change memory cell may be formed with a carbon-containing interfacial layer that heats a phase-change material. By forming the phase-change material in contact, in one embodiment, with the carbon containing interfacial layer, the amount of heat that may be applied to the phase-change material, at a given current and temperature, may be increased. In some embodiments, the performance of the interfacial layer at high temperatures may be improved by using a wide band gap semiconductor material such as silicon carbide.
Abstract:
A planarized surface may be formed by initially forming an aperture through an insulating layer. The insulating layer and its aperture may be conformally coated with a conductive material that ultimately acts as a planarization stop. The conductive material may then be covered with another insulator that fills the remainder of the aperture. Thereafter, the structure may be planarized down to the conductive layer that acts as a planarization stop.
Abstract:
A method comprising forming a sacrificial layer over less than the entire portion of a contact area on a substrate, the sacrificial layer having a thickness defining an edge over the contact area, forming a spacer layer over the spacer, the spacer layer conforming to the shape of the first sacrificial layer such that the spacer layer comprises an edge portion over the contact area adjacent the first sacrificial layer edge, removing the sacrificial layer, while retaining the edge portion of the spacer layer over the contact area, forming a dielectric layer over the contact area, removing the edge portion, and forming a programmable material to the contact area formerly occupied by the edge portion. An apparatus comprising a volume of programmable material, a conductor, and an electrode disposed between the volume of programmable material and the conductor, the electrode having a contact area at one end coupled to the volume of programmable material, wherein the contact area is less than the surface area at the one end.
Abstract:
Briefly, in accordance with an embodiment of the invention, a method and an apparatus to read a phase change memory is provided, wherein the method includes zero biasing unselected memory cells during reading of a selected memory cell.
Abstract:
An apparatus comprising a volume of memory material and a pair of spacedly disposed conductors. An electrode coupled to the volume of memory material and disposed between the volume of memory material and one conductor comprises a first material having a first resistivity value and a second material having a different second resistivity value formed by exposing the first material to a gaseous ambient.
Abstract:
A method for manufacturing Flash memory devices includes forming a well region in a substrate, depositing a gate dielectric layer overlying the well region, and depositing a first polysilicon layer overlying the gate dielectric layer. The method also includes depositing a dielectric layer overlying the first polysilicon layer and depositing a second polysilicon layer overlying the dielectric layer to form a stack layer. The method simultaneously patterns the stack layer to form a first flash memory cell, which includes a first portion of the second polysilicon layer overlying a first portion of the dielectric layer overlying a first portion of first polysilicon layer and to form a select device, which includes a second portion of second polysilicon layer overlying a second portion of dielectric layer overlying a second portion of first polysilicon layer. The method further includes forming source/drain regions using ion implant. The select device is activated by applying voltage to the second portion of first polysilicon layer.
Abstract:
A system and method for adjusting power consumption of a USB-based device. The system includes a power supply configured to generate a first supply voltage, a controller configured to receive the first supply voltage and generate a control signal, and a USB component configured to receive the control signal and in response operate in a first USB mode or a second USB mode. The controller is further configured to process information associated with the first supply voltage and a predetermined threshold voltage. If the first supply voltage is higher than the predetermined threshold voltage, the control signal represents a first logic state. If the first supply voltage is lower than the predetermined threshold voltage, the control signal represents a second logic state.
Abstract:
A phase-change memory may have a tapered lower electrode coated with an insulator. The coated, tapered electrode acts as a mask for a self-aligned trench etch to electrically separate adjacent wordlines. In some embodiments, the tapered lower electrode may be formed over a plurality of doped regions, and isotropic etching may be used to taper the electrode as well as part of the underlying doped regions.