Abstract:
A method in one embodiment includes intercepting a message in an on-board unit (OBU) of a vehicular network environment between a source and a receiver in the vehicular network environment, verifying the message is sent from the source, verifying the message is not altered, evaluating a set of source flow control policies associated with the source, and blocking the message if the set of source flow control policies indicate the message is not permitted. In specific embodiments, the message is not permitted if a level of access assigned to the source in the set of source flow control policies does not match a level of access tagged on the message. In further embodiments, the method includes evaluating a set of receiver flow control policies associated with the receiver, and blocking the message if the set of receiver flow control policies indicates the message is not permitted.
Abstract:
Provided are a method, a non-transitory computer-readable storage device and an apparatus for managing use of a shared memory buffer that is partitioned into multiple banks and that stores incoming data received at multiple inputs in accordance with a multi-slice architecture. A particular bank is allocated to a corresponding slice. Received respective data packets are associated with corresponding slices based on which respective inputs they are received. Determine, based on a state of the shared memory buffer, to transfer contents of all occupied cells of the particular bank. Writes to the bank are stopped, contents of occupied cells are transferred to cells of one or more other banks associated with the particular bank's slice, information is stored indicating where the contents have been transferred, and the particular bank is returned to a shared pool after transferring is completed.
Abstract:
Provided are a method, a non-transitory computer-readable storage device and an apparatus for managing use of a shared memory buffer that is partitioned into multiple banks and that stores incoming data received at multiple inputs in accordance with a multi-slice architecture. A particular bank is allocated to a corresponding slice. Received respective data packets are associated with corresponding slices based on which respective inputs they are received. Determine, based on a state of the shared memory buffer, to transfer contents of all occupied cells of the particular bank. Writes to the bank are stopped, contents of occupied cells are transferred to cells of one or more other banks associated with the particular bank's slice, information is stored indicating where the contents have been transferred, and the particular bank is returned to a shared pool after transferring is completed.
Abstract:
An example method is provided and includes determining a time shift comprising a difference in time between a packet count observation at a transmit element and a corresponding packet count observation at a receive element connected to the transmit element via a link; obtaining a first packet count from the transmit element and a second packet count from the receive element; and adjusting at least one of the first packet count and the second packet count to compensate for the time shift. The method further includes comparing the adjusted first and second packet counts to determine whether there is a discrepancy between the counts and if a discrepancy is detected between the counts, adjusting a rate at which the transmit element sends packets to the receive element.
Abstract:
In one embodiment, an HTTP streaming session may be initiated at a client device in a network. The client device may have a buffer and may be configured to request and receive one or more data segments over HTTP from an HTTP server. A first data segment at a first data source rate may be requested and subsequently received. The first data segment may be stored in the buffer. A second data source rate may then be calculated based on a storage level in the buffer, and a second data segment at the second data source rate may be requested.
Abstract:
An apparatus can include a session rate limit calculator and a rate limiter. The session rate limit calculator can be configured to compute a session rate limit for a given session of a plurality of active streaming media sessions based on state information for the given session and state information for a downstream bottleneck link to which the apparatus feeds the plurality of active streaming media sessions. The rate limiter can be configured to control downstream traffic for the given session based on the computed session rate limit and to provide corresponding rate-limited downstream traffic for the given session.
Abstract:
A method includes establishing communication channels between an on-board unit (OBU) of a vehicle and a plurality of nodes, tagging each of a plurality of data from the plurality of nodes with a priority level, storing the plurality of data in a priority queue according to respective priority levels, selecting a medium to present a first data of the plurality of data to a user, and presenting the first data to the user via the medium. In the method, the plurality of nodes includes a remote node and an in-vehicle device. Another method includes receiving a data from a remote node, generating a plurality of data streams from the data and transmitting the plurality of data streams across a plurality of wireless interfaces. Another method includes enhancing audio signals from a plurality of microphones and speakers. Yet another method includes various gesture based user interfaces coupled to the OBU.
Abstract:
A method in one embodiment includes intercepting a message in an on-board unit (OBU) of a vehicular network environment between a source and a receiver in the vehicular network environment, verifying the message is sent from the source, verifying the message is not altered, evaluating a set of source flow control policies associated with the source, and blocking the message if the set of source flow control policies indicate the message is not permitted. In specific embodiments, the message is not permitted if a level of access assigned to the source in the set of source flow control policies does not match a level of access tagged on the message. In further embodiments, the method includes evaluating a set of receiver flow control policies associated with the receiver, and blocking the message if the set of receiver flow control policies indicates the message is not permitted.
Abstract:
A network device, including ports that receive/send data packets from/to a network, receives data packets of multiple traffic flows, and populates a queue in memory with the data packets. The network device periodically updates a fair rate for the multiple traffic flows to converge a length of the queue to a reference length. Specifically, the network device determines a length of the queue, a change in the length from a previous length, and a deviation of the length from the reference length. The network device detects an increase in the change in length above a threshold that is based on the reference length. If the increase is not above the threshold, the network device derives the fair rate from a previous fair rate using proportional integral control. The network device identifies elephant flows among the multiple traffic flows, and sends the fair rate to a source of each elephant flow.
Abstract:
A network device, including ports that receive/send data packets from/to a network, receives data packets of multiple traffic flows, and populates a queue in memory with the data packets. The network device periodically updates a fair rate for the multiple traffic flows to converge a length of the queue to a reference length. Specifically, the network device determines a length of the queue, a change in the length from a previous length, and a deviation of the length from the reference length. The network device detects an increase in the change in length above a threshold that is based on the reference length. If the increase is not above the threshold, the network device derives the fair rate from a previous fair rate using proportional integral control. The network device identifies elephant flows among the multiple traffic flows, and sends the fair rate to a source of each elephant flow.