Abstract:
The present invention uses a treatment that involves an etching treatment that forms a pnictogen-rich region on the surface of a pnictide semiconductor film The region is very thin in many modes of practice, often being on the order of only 2 to 3 nm thick in many embodiments. Previous investigators have left the region in place without appreciating the fact of its presence and/or that its presence, if known, can compromise electronic performance of resultant devices. The present invention appreciates that the formation and removal of the region advantageously renders the pnictide film surface highly smooth with reduced electronic defects. The surface is well-prepared for further device fabrication.
Abstract:
A photovoltaic system that converts incident light into electrical energy that includes a light trapping optical module having a light randomizing dielectric slab with a first surface and a second surface, a first cell adjacent to the first surface of the slab that has a bandgap of lower energy than the energy of absorption onset of the dielectric slab, at least one filter element in optical contact with the second surface of the dielectric slab, and a sub-cell array with a plurality of photovoltaic sub-cells, wherein at least one of the sub-cells has a first surface that is in optical contact with the at least one filter element.
Abstract:
A device for color imaging including an optical sensor having light sensitive pixels with a metal film disposed over the light sensitive pixels. The metal film has a group of nano-holes arranged over the pixels according to a periodic lattice formation and is configured to pass light of a preselected first range of wavelengths. The group of nano-holes arranged over an adjoining group of pixels is configured to pass light having ranges of wavelengths different from the first range of wavelengths.
Abstract:
Systems and methods for generating high-pressure hydrogen are described. The hydrogen generation systems include hybrid electrolyzer systems and catalytic compression systems. The systems can directly generate gaseous hydrogen at a pressure of at least 700 bar.
Abstract:
Systems and methods in accordance with various embodiments of the invention provide a photovoltaic concentrator tile for a space-based solar power (SBSP) system including constituent components thereof. In a number of embodiments, the photovoltaic concentrator tile include a one photovoltaic cell, a reflector, a power transmitter and circuitry configured to perform a variety of control functions. Embodiments also provide compactible structures, materials for improving thermal emissivity, and methods and mechanisms for manufacturing and using these components.
Abstract:
Photovoltaics configured to be manufactured without epitaxial processes and methods for such manufacture are provided. Methods utilize bulk semiconducting crystal substrates, such as, for example, GaAs and InP such that epitaxy processes are not required. Nanowire etch and exfoliation processes are used allowing the manufacture of large numbers of photovoltaic cells per substrate wafer (e.g., greater than 100). Photovoltaic cells incorporate electron and hole selective contacts such that epitaxial heterojunctions are avoided during manufacture.
Abstract:
Compactable power generation arrays are provided. The compactable power generation arrays may include a structural substrate body having an array of solar concentrators configured to receive and re-direct solar radiation onto a plurality of photovoltaic (PV) cells. In many other embodiments the PV cells may be disposed upon a back surface of each of the solar concentrators such that an adjacent solar concentrator is configured to re-direct solar radiation onto the PV cell disposed on the back surface of the adjacent solar concentrator.
Abstract:
The optical response of a metasurface is controlled by actuating it via an electrical or magnetic field, temperature control, optical pumping or electromechanical actuation. The metasurface will therefore control the polarization of the incident light. The metasurface comprises an array of patch antennas. The patch antennas are in the form of asymmetrical elements, including rotated rods, cross-shapes, V-shapes, and L-shapes.
Abstract:
Electrically tunable metasurfaces including an array of subwavelength metasurface unit elements are presented. The unit elements include a stacked metal-insulator-metal structure within which an active phase change layer is included. A purely insulator, metal, or coexisting metal-insulator phase of the active layer can be electrically controlled to tune an amplitude and phase response of the metasurfaces. In combination with the subwavelengths dimensions of the unit elements, the phase and amplitude response can be controlled in a range from optical wavelengths to millimeter wavelength of incident light. Electrical control of the unit elements can be provided via resistive heating produced by flow of current though a top metal layer of the unit elements. Alternatively, electrical control of the unit elements can be provided via electrical field effect produced by applying a voltage differential between the top and bottom metal layers of the unit elements.