Abstract:
A slave resource router may receive a client request. The slave resource router may be the nearest representation of an Anycast IP address in a network to a client sending the client request in the network. The slave resource router may then determine that the slave resource router has been authorized to cache content for a delivery service corresponding to the client request. Next, the slave resource router may determine that content corresponding to the client request is cached locally in a blind cache. Then the slave resource router may provide the client with the content from the blind cache.
Abstract:
A networked electronic device produces a data object comprising content and assigns a location-independent application-level name to the data object. The location-independent application-level name is independent of any network location at which the content is available. The networked electronic device maps the location-independent application-level name to an IP address, generates a DNS resource record specifying the mapping of the location-independent application-level name to the IP address, and provides the DNS resource record to a DNS network node.
Abstract:
Techniques are presented for optimizing secure communications in a network. As disclosed herein, a key server is configured to provision a plurality of routers that are part of a virtual private network. The key server selects a counter value that is part of a security association and calculates a key value. The key server sends the key value, together with the security association, to the plurality of routers that are part of the virtual private network to enable them to exchange encrypted packets with each other in the virtual private network using the key value and the security association. The key server then increments the counter value to a value within a range of counter values capable of being predicted by the plurality of routers that received the key value.
Abstract:
A first customer edge network device receives an encapsulated packet that includes inner headers comprising source address information for a first service running on a first computing apparatus in a first home cloud and destination address information for a second service running on a second computing apparatus in a second home cloud. The customer edge network device inserts a predetermined portion of bits of a virtual domain identifier of the encapsulated packet into a label to form a virtual domain label for label-based routing. The virtual domain label is appended to the encapsulated packet. The encapsulated packet is sent to a first provider edge network device of a provider network. The first provider edge network device appends an virtual private network label to the encapsulated packet, and sends the encapsulated packet to a provider network device for label-based routing in the provider network.
Abstract:
Various techniques that allow group members to detect the use of stale encryption policy by other group members are disclosed. One method involves receiving a message from a first group member via a network. The message is received by a second group member. The method then detects that the first group member is not using a most recent policy update supplied by a key server, in response to information in the message. In response, a notification message can be sent from the second group member. The notification message indicates that at least one group member is not using the most recently policy update. The notification message can be sent to the key server or towards the first group member.
Abstract:
In one embodiment, a client device queries a location server using a client-selected interface for content retrieval from a content distribution network (CDN), and receives a location attribute from the location server based on a location of the client device. The client device then presents the location attribute to a CDN selector within a first content retrieval request, and may receive a redirection from the CDN selector to a selected content source based on the location attribute. As such, the client device may then initiate a second content retrieval request to the selected content source. In another embodiment, a CDN selector receives a content retrieval request from a client device, and determines that the content retrieval request contains a location attribute indicating a location of the client device. Based on the location attribute, the CDN selector selects a content source, and redirects the client device to the selected content source.
Abstract:
In one example, an Access Point (AP) configures a first mapping of a first cellular network connection to a first local access network group, and further configures a second mapping of a second cellular network connection to a second local access network group. The AP determines whether a user device is authorized to use the first cellular network connection or the second cellular network connection. If the user device is authorized to use the first cellular network connection, the AP associates, for the user device, a first user device identifier with the first local access network group. If the user device is authorized to use the second cellular network connection, the AP associates, for the user device, a second user device identifier with the second local access network group.
Abstract:
A system and methods for providing dynamic transcoder rate adaption for an adaptive bit streaming function is described. In a first embodiment, a client may select from all available bit rates during the encoding session, wherein the bit rates are provided to the client via a manifest file from a media gateway. In a second embodiment, a subset of the bit rates are provided to the client, from which a client chooses a selected bit rate. The encoding session continues until a request for a new bit rate is received from the client, at which time a new subset of bit rates are generated. This new subset of bit rates is presented to the client, and this loop continues until the termination of the encoding session.
Abstract:
A slave resource router may receive a client request. The slave resource router may be the nearest representation of an Anycast IP address in a network to a client sending the client request in the network. The slave resource router may then determine that the slave resource router has been authorized to cache content for a delivery service corresponding to the client request. Next, the slave resource router may determine that content corresponding to the client request is cached locally in a blind cache. Then the slave resource router may provide the client with the content from the blind cache.
Abstract:
A system and methods for providing dynamic transcoder rate adaption for an adaptive bit streaming function is described. In a first embodiment, a client may select from all available bit rates during the encoding session, wherein the bit rates are provided to the client via a manifest file from a media gateway. In a second embodiment, a subset of the bit rates are provided to the client, from which a client chooses a selected bit rate. The encoding session continues until a request for a new bit rate is received from the client, at which time a new subset of bit rates are generated. This new subset of bit rates is presented to the client, and this loop continues until the termination of the encoding session.