Abstract:
Techniques are presented for optimizing secure communications in a network. As disclosed herein, a key server is configured to provision a plurality of routers that are part of a virtual private network. The key server selects a counter value that is part of a security association and calculates a key value. The key server sends the key value, together with the security association, to the plurality of routers that are part of the virtual private network to enable them to exchange encrypted packets with each other in the virtual private network using the key value and the security association. The key server then increments the counter value to a value within a range of counter values capable of being predicted by the plurality of routers that received the key value.
Abstract:
Techniques are presented for optimizing secure communications in a network. A first router receives from a second router an encrypted packet with an unknown security association. The first router examines the packet to determine whether the counter value is in a range of predicted counter values. Additionally, a key server is configured to provision routers that are part of a virtual private network. The key server selects a counter value that is part of a security association and calculates a key value. The key server sends the key value together with the security association to enable routers to exchange encrypted packets with each other in the virtual private network using the key value and the security association. The key server increments the counter value to a value within a range of counter values capable of being predicted by the routers.
Abstract:
A server sends information to a client that allows the client to establish a first key at the client. The server then receives a session ID that has been encrypted using the first key. The first key is then established at the server, which can then decrypt the session ID using the first key. After the server validates the session ID, it determines a second key that is different from the first key. The server then receives the session ID encrypted with the second key, and decrypts the session ID encrypted with the second key.
Abstract:
A method for routing in a quantum network is provided. The method may include receiving parameters including a fidelity with coherence decay time and an entanglement generation rate for each quantum node in a mesh quantum network by a controller, the controller being configured to communicate with each quantum node of a plurality of quantum nodes in the mesh quantum network. Each quantum node includes a quantum memory and a processor. The method may also include analyzing the fidelity with coherence decay time and the entanglement generation rate to yield a determination of a path fidelity with a path coherence decay time and a path entanglement generation rate between at least one pair of quantum nodes. The method may further include, based on the determination, selecting a quantum communication path from a source node to a destination node.
Abstract:
A server sends information to a client that allows the client to establish a first key at the client. The server then receives a session ID that has been encrypted using the first key. The first key is then established at the server, which can then decrypt the session ID using the first key. After the server validates the session ID, it determines a second key that is different from the first key. The server then receives the session ID encrypted with the second key, and decrypts the session ID encrypted with the second key.
Abstract:
Techniques are described herein for optimizing communications in a network. At a router in a virtual private network, a packet is received from a device in a subnetwork protected by the router. The router examines the packet to determine a source address that identifies the device and a destination address that identifies a destination network device for the packet. The router also analyzes the packet to determine a size of the packet and determines whether or not the size of the packet is larger than a maximum transmission unit size. If the size of the packet is larger than the maximum transmission unit size, the router encapsulates the packet with a header that includes the destination address and a new source address that identifies the router.
Abstract:
Techniques are described herein for optimizing communications in a network. At a router in a virtual private network, a packet is received from a device in a subnetwork protected by the router. The router examines the packet to determine a source address that identifies the device and a destination address that identifies a destination network device for the packet. The router also analyzes the packet to determine a size of the packet and determines whether or not the size of the packet is larger than a maximum transmission unit size. If the size of the packet is larger than the maximum transmission unit size, the router encapsulates the packet with a header that includes the destination address and a new source address that identifies the router.
Abstract:
Techniques are described herein for optimizing communications in a network. At a router in a virtual private network, a packet is received from a device in a subnetwork protected by the router. The router examines the packet to determine a source address that identifies the device and a destination address that identifies a destination network device for the packet. The router also analyzes the packet to determine a size of the packet and determines whether or not the size of the packet is larger than a maximum transmission unit size. If the size of the packet is larger than the maximum transmission unit size, the router encapsulates the packet with a header that includes the destination address and a new source address that identifies the router.
Abstract:
A method for routing in a quantum network is provided. The method may include receiving parameters including a fidelity with coherence decay time and an entanglement generation rate for each quantum node in a mesh quantum network by a controller, the controller being configured to communicate with each quantum node of a plurality of quantum nodes in the mesh quantum network. Each quantum node includes a quantum memory and a processor. The method may also include analyzing the fidelity with coherence decay time and the entanglement generation rate to yield a determination of a path fidelity with a path coherence decay time and a path entanglement generation rate between at least one pair of quantum nodes. The method may further include, based on the determination, selecting a quantum communication path from a source node to a destination node.
Abstract:
Techniques are described herein for optimizing communications in a network. At a router in a virtual private network, a packet is received from a device in a subnetwork protected by the router. The router examines the packet to determine a source address that identifies the device and a destination address that identifies a destination network device for the packet. The router also analyzes the packet to determine a size of the packet and determines whether or not the size of the packet is larger than a maximum transmission unit size. If the size of the packet is larger than the maximum transmission unit size, the router encapsulates the packet with a header that includes the destination address and a new source address that identifies the router.