Abstract:
The present application discloses an array substrate having a signal line; a common electrode line; an electrostatic discharge (ESD) protector comprising a first discharging terminal coupled to the signal line, and a second discharging terminal coupled to the common electrode line; and an ESD protector repair unit comprising a first repair terminal in close proximity to the first discharging terminal but separated from each other, a second repair terminal in close proximity to the common electrode line but separated from each other.
Abstract:
The present application discloses an array substrate having a signal line; a common electrode line; an electrostatic discharge (ESD) protector comprising a first discharging terminal coupled to the signal line, and a second discharging terminal coupled to the common electrode line; and an ESD protector repair unit comprising a first repair terminal in close proximity to the first discharging terminal but separated from each other, a second repair terminal in close proximity to the common electrode line but separated from each other.
Abstract:
An array substrate of an organic light-emitting display device, a fabrication method thereof and an organic light-emitting display device are provided. The array substrate comprises a plurality of pixel units arranged in array, wherein, at least one of the pixel units includes: an organic light-emitting diode (40) and a first thin film transistor (20) for controlling the organic light-emitting diode (40) which are formed on a base substrate (10), wherein, the organic light-emitting diode (40) includes a first electrode (107), a second electrode (110) and a light-emitting layer (109) located between the first electrode (107) and the second electrode (110), the first electrode (107) of the organic light-emitting diode (40) being connected with a drain electrode (104) of the first thin film transistor (20); and a conductive layer (111) and an insulating layer (112) formed between the first thin film transistor (20) and the organic light-emitting diode (40), wherein, the first electrode (107) of the organic light-emitting diode (40), the insulating layer (111) and the conductive layer (112) form a capacitor, and the conductive layer (111) is connected with a first gate electrode (100) of the first thin film transistor (20). The array substrate of the organic light-emitting display device, the fabrication method thereof and the organic light-emitting display device can effectively increase a storage capacitance value of a pixel unit, so as to improve display quality.
Abstract:
The present disclosure provides a compensating circuit. The compensating circuit includes a feedback module, and a driving transistor with a first gate, a second gate, a first electrode, and a second electrode. A first terminal of the feedback module is connected to a first voltage source and a second terminal of the feedback module is connected to the first electrode and the second gate of the driving transistor; and the first gate of the driving transistor is connected to a data line, and the second electrode of the driving transistor for outputting a driving current.
Abstract:
An OLED driving circuit, an array substrate and a display device are provided. The OLED driving circuit includes a plurality of driving TFTs and a plurality of sense TFTs. Each sense TFT is configured to compensate for a threshold voltage of the respective driving TFT. Each sense TFT corresponds to a respective one of the driving TFTs, a source electrode of each sense TFT is connected to a sense line, and a drain electrode thereof is connected to a drain electrode of the respective driving TFT. The plurality of sense TFTs is divided into a plurality of groups, each group includes at least two sense TFTs which share a same gate electrode and a same source electrode and are connected to a same sense line.
Abstract:
There are provided in the present disclosure a pixel driving circuit, an array substrate and a display apparatus. The pixel driving circuit comprises: a compensation module (11), a control module (12), a driving modeling (13), and a light emitting module (14), wherein: the compensation module (11) is connected to a scan signal (Scan), a data signal (Vdata) and a reference signal (VREF) and further connected to the control module (12) and the drive module (13), and is configured to receive the data signal (Vdata) and the reference signal (VREF) under the control of the scan signal (Scan) and compensate for a threshold voltage of the drive module (13) under the control of the control module (12); the control module (12) is connected to a light emitting control signal (EM) and a power supply signal (ELVDD) and further connected to the drive module (13) and the light emitting module (14), and is configured to receive the power supply signal (ELVDD) under the control of the light emitting control signal (EM) to control the compensation module (11) to compensate for the threshold voltage of the drive module (13); one terminal of the light emitting module (14) is connected to the drive module (13), and the other terminal thereof is grounded (VSS); and; the drive module (13) is configured to drive the light emitting module (14) to emit light under the control of the control module (12). The pixel driving circuit is capable of avoiding non-uniformity of luminance of the display device, and enhancing the display effect of the display device.
Abstract:
An electrostatic discharge device comprises a transistor with one of its source and drain serving as an input terminal of said device and the other serving as an output terminal. Said transistor comprises: a first conductive layer used as a first floating gate; a first insulating layer covering said first conductive layer; an active layer on said first insulating layer; a second insulating layer covering said active layer; a second conductive layer used as a second floating gate and on said second insulating layer; a third insulating layer covering said second conductive layer; a third conductive layer and a fourth conductive layer on said third insulating layer and on both sides of the active layer, said third conductive layer being isolated from the fourth conductive layer, wherein said third conductive layer serves as one of the source and the drain and said fourth conductive layer serves as the other.
Abstract:
The embodiments of the present disclosure disclose a gate driving circuit and a display panel. In the gate driving circuit, a control unit of a shift register may input a dual pulse control signal to a first control terminal of an output unit; and the output unit outputs a scanning signal having a pulse width equal to a pulse period of the dual pulse control signal to a corresponding gate line under the control of the dual pulse control signal. In this way, the output unit is controlled by the control unit to output a scanning signal of which a pulse width may be modulated, so as to output a gate signal of which a pulse width may be modulated.
Abstract:
The present disclosure provides an organic light-emitting diode (OLED) array substrate. The OLED array substrate includes a display area with OLEDs arranged in arrays, electrostatic discharge lines, and peripheral electrostatic discharge areas with conductive areas electrically connected to a cathode of the OLEDs and electrically connected to the electrostatic discharge lines through switch modules.