Abstract:
A blood separation device that is adapted to receive a multi-component blood sample is disclosed. After collecting the blood sample, the blood separation device is able to separate a plasma portion from a cellular portion. After separation, the blood separation device is able to transfer the plasma portion of the blood sample to a point-of-care testing device. The blood separation device also provides a closed sampling and transfer system that reduces the exposure of a blood sample and provides fast mixing of a blood sample with a sample stabilizer. The blood separation device is engageable with a blood testing device for closed transfer of a portion of the plasma portion from the blood separation device to the blood testing device. The blood testing device is adapted to receive the plasma portion to analyze the blood sample and obtain test results.
Abstract:
A mechanical separator for separating a fluid sample into first and second phases within a collection container is disclosed. The mechanical separator may have a separator body having a through-hole defined therein, with the through-hole adapted for allowing fluid to pass therethrough. The separator body includes a float, having a first density, and a ballast, having a second density greater than the first density. A portion of the float is connected to a portion of the ballast. Optionally, the float may include a first extended tab adjacent a first opening of the through-hole and a second extended tab adjacent the second opening of the through-hole. In certain configurations, the separator body also includes an extended tab band disposed about an outer surface of the float. The separator body may also include an engagement band circumferentially disposed about at least a portion of the separator body.
Abstract:
A mechanical separator for separating a fluid sample into first and second phases within a collection container is disclosed. The mechanical separator may have a separator body having a through-hole defined therein, with the through-hole adapted for allowing fluid to pass therethrough. The separator body includes a float, having a first density, and a ballast, having a second density greater than the first density. A portion of the float is connected to a portion of the ballast. Optionally, the float may include a first extended tab adjacent a first opening of the through-hole and a second extended tab adjacent the second opening of the through-hole. In certain configurations, the separator body also includes an extended tab band disposed about an outer surface of the float. The separator body may also include an engagement band circumferentially disposed about at least a portion of the separator body.
Abstract:
A mechanical separator for separating a fluid sample into first and second phases within a collection container is disclosed. The mechanical separator may have a separator body having a through-hole defined therein, with the through-hole adapted for allowing fluid to pass therethrough. The separator body includes a float, having a first density, and a ballast, having a second density greater than the first density. A portion of the float is connected to a portion of the ballast. Optionally, the float may include a first extended tab adjacent a first opening of the through-hole and a second extended tab adjacent the second opening of the through-hole. In certain configurations, the separator body also includes an extended tab band disposed about an outer surface of the float. The separator body may also include an engagement band circumferentially disposed about at least a portion of the separator body.
Abstract:
A mechanical separator for separating a fluid sample into first and second phases within a collection container is disclosed. The mechanical separator may have a separator body having a through-hole defined therein, with the through-hole adapted for allowing fluid to pass therethrough. The separator body includes a float, having a first density, and a ballast, having a second density greater than the first density. A portion of the float is connected to a portion of the ballast. Optionally, the float may include a first extended tab adjacent a first opening of the through-hole and a second extended tab adjacent the second opening of the through-hole. In certain configurations, the separator body also includes an extended tab band disposed about an outer surface of the float. The separator body may also include an engagement band circumferentially disposed about at least a portion of the separator body.
Abstract:
A biological sample containment system that includes a biological specimen collection container for collecting a biological sample and a label for the container is disclosed. In one embodiment, the label includes a first or front side and a second or rear side having a readable information portion. The label is affixable to the container by the second side and with the label affixed to the container, the readable information portion on the second side is readable through a portion of the container. By including readable information on the second or rear side of the label, the amount of readable information that can be included on the label is increased by using the previously unused rear side of the label.
Abstract:
A regulator for modulation of the flow rate of blood out of a patients blood vessel during blood collection is disclosed. The regulator includes a housing having a housing inlet, a housing outlet, and a wall defining a housing interior. At least a portion of the wall includes a flexible member. A valve is associated with the flexible member and is in communication with the housing interior. The regulator is designed so that upon an application of a differential pressure within the housing interior, the flexible member and/or valve automatically move with respect to either the housing inlet or housing outlet to modulate a flow of blood moving through the housing. A manual over-ride device can be provided to enable a user to over-ride the automatic regulation and manually regulate the flow of blood through the housing.
Abstract:
A mechanical separator for separating a fluid sample into first and second phases is disclosed. The mechanical separator includes a float having a passageway extending between first and second ends thereof with a pierceable head enclosing the first end of the float, a ballast longitudinally moveable with respect to the float, and a bellows extending between a portion of the float and a portion of the ballast. The bellows is adapted for deformation upon longitudinal movement of the float and the ballast, with the bellows isolated from the pierceable head. The float has a first density and the ballast has a second density greater than the first density. The bellows is structured for sealing engagement with a cylindrical wall of a tube, and the pierceable head is structured for application of a puncture tip therethrough. The separation device is suitable for use with a standard medical collection tube.
Abstract:
A flow regulator for a blood collection assembly includes a housing having an inlet and an outlet, which defines an interior space between the inlet and the outlet. A membrane having a first surface and a second surface is disposed at least partially within the interior space. The membrane has a first position where a flow path between the inlet and the outlet is substantially open, and a second position where the flow path between the inlet and the outlet is at least partially restricted. The membrane is configured to move between the first and second positions in response to a pressure differential acting on the membrane.
Abstract:
A mechanical separator for separating a fluid sample into first and second phases is disclosed. The mechanical separator includes a float having a passageway extending between first and second ends thereof with a pierceable head enclosing the first end of the float, a ballast longitudinally moveable with respect to the float, and a bellows extending between a portion of the float and a portion of the ballast. The bellows is adapted for deformation upon longitudinal movement of the float and the ballast, with the bellows isolated from the pierceable head. The float has a first density and the ballast has a second density greater than the first density. The bellows is structured for sealing engagement with a cylindrical wall of a tube, and the pierceable head is structured for application of a puncture tip therethrough. The separation device is suitable for use with a standard medical collection tube.