Abstract:
An acceleration sensor, a display device, a detecting system and a detecting method are provided; the acceleration sensor includes two electrodes arranged opposite to and insulated from each other, and a cavity arranged between the two electrodes; a liquid layer is arranged in the cavity, and the liquid layer occupies a portion of internal space of the cavity. A display device integrated with the acceleration sensor has advantages such as high degree of integration, compact structure and low production cost and so on.
Abstract:
A display device comprising: a display module for displaying image and having a substrate being an upper component of the display module; a sensing electrode for sensing an electrocardio signal of a user, with the sensing electrode arranged above the substrate. With such a display device, high integration of the function of health test and the display device can be integrated, thereby improving usage experience of the user and facilitating to reduce the whole size of the display device.
Abstract:
A method for classifying an image of a displaying base plate includes: acquiring an image to be checked; from a first predetermined-type set, determining a type of the image to be checked. The first predetermined-type set includes: a first image type, a second image type and a third image type. An image of the first image type is a no-defect image, an image of the second image type is a blurred image, and an image of the third image type is a defect image. When the type of the image to be checked is the third image type, by using a first convolutional neural network, determining a defect data of the image to be checked, wherein the defect image refers to an image of a displaying base plate having a defect, and the defect data contains a defect type of the displaying base plate in the image to be checked.
Abstract:
A sensor includes: a substrate and at least one infrared temperature measurement unit disposed on the substrate. An infrared temperature measurement sub-unit includes: a first support portion, at least one second support portion, a thermocouple, and an infrared absorption portion. The thermocouple includes a first electrode and a second electrode, each of which includes a first end and a second end; the first ends of the first electrode and the second electrode are connected and disposed on the first support portion; the infrared absorption portion is disposed on the first support portion and covers the first ends of the first electrode and the second electrode; the second ends of the first electrode and the second electrode are not connected and disposed on the second support portion; and in the infrared temperature measurement unit, a cavity structure is included between at least the adjacent first and second support portions.
Abstract:
Disclosed is a model training method, a performance prediction method, an apparatus, a device and a medium, which relate to the technical field of display. The model training method includes acquiring a training sample set, wherein the training sample set includes: training design data and test data of a sample display device; inputting the training sample design data into a model to be trained, and training the model to be trained according to an output of the model to be trained and the training sample test data to obtain an initial prediction model; when the initial prediction model satisfies a pre-set condition, determining the initial prediction model as a performance prediction model; and a performance prediction model for predicting performance data of a target display device.
Abstract:
An embodiment of the disclosure provides an immunodetection chip, an immunodetection device and a using method. The immunodetection chip includes a substrate and a cover plate. The substrate is disposed opposite to the cover plate to form a detection chamber. One side, facing the cover plate, of the substrate is fixedly provided with substrate antibodies. An inside wall of the detection chamber is provided with a detection member. The detection member is configured to output a corresponding electrical signal while adsorbing biological magnetic beads. The substrate antibodies match with target antigens.
Abstract:
An all-solid-state lithium battery is disclosed, including a substrate; and a plurality of layers of lithium battery units stacked on the substrate. Each layer of lithium battery unit of the plurality of layers of lithium battery units includes at least two electrode collector layers, a first electrode layer, an electrolyte layer and a second electrode layer. Two neighboring layers of lithium battery units share one of the electrode collector layers. A method for fabricating an all-solid-state lithium battery is further disclosed.
Abstract:
Embodiments of the present disclosure relate to a movable electrode structure and a liquid crystal lens. The movable electrode structure includes: a substrate; a support on the substrate; a first beam having elasticity and attached to the support; an electrode attached to the first beam; and an opposing member located on the substrate and at least partially facing the first beam.
Abstract:
An optical axis tunable liquid crystal lens includes a liquid crystal layer; and a control electrode configured to adjust an optical axis of the optical axis tunable liquid crystal lens. The control electrode includes a first electrode configured to be provided with a common voltage signal and a second electrode configured to be provided with a control voltage signal. The first electrode is on a side of the liquid crystal layer away from the second electrode. The second electrode includes a first sub-electrode and a second sub-electrode spaced apart from each other and being on two opposite sides with respect to a center of the second electrode, the first sub-electrode and the second sub-electrode being independently addressable, the first sub-electrode configured to be provided with a first voltage signal and the second sub-electrode configured to be provided with a second voltage signal.
Abstract:
The present application discloses a fingerprint identification device, a driving method thereof, a display panel and a display apparatus. The fingerprint identification device comprises a plurality of fingerprint identification units arranged in a matrix, a signal input line for loading a detection signal and a signal reading line for reading an identification signal which are in one-to-one correspondence with each column of fingerprint identification units. Each fingerprint identification unit comprises a fingerprint identification electrode, a first switch unit and a second switch unit connected to the signal input line respectively. The first switch unit is used for controlling an electrical conduction between the fingerprint identification electrode and the signal input line, the second switch unit is used for controlling an electrical conduction between the fingerprint identification electrode and the signal reading line.