Abstract:
A thermal separation process between a gas ascending in a separating column and a liquid descending in the separating column, which comprise (meth)acrylic monomers, wherein the separating column comprises a sequence of crossflow mass transfer trays, the crossflow mass transfer trays of which have passage orifices for the ascending gas in crossflow direction both in front of and beyond a downcomer for the descending liquid, and such crossflow mass transfer trays and one such crossflow mass transfer tray in a sequence of crossflow mass transfer trays present in a separating column.
Abstract:
Process for inhibiting the undesired free-radical polymerization of acrylic acid present in a liquid phase P, wherein the acrylic acid content of P is at least 10% by weight, the liquid phase P comprises in the range from 25 to 1000 ppmw of glyoxal based on the weight of the acrylic acid present in P and the liquid phase P is admixed with furfural in an amount that results in a furfural content in the range from 25 to 1000 ppmw based on the weight of the acrylic acid present in P. Liquid phase P, wherein the acrylic acid content of P is at least 10% by weight and the liquid phase P comprises in the range from 25 to 1000 ppmw of glyoxal and in the range from 25 to 1000 ppmw of furfural in each case based on the weight of the acrylic acid present in P.
Abstract:
The present invention relates to an apparatus (1) for separation of a target product from a liquid phase P comprising the target product, comprising at least one primary space (3) for a heat transfer medium W, at least one first feed unit (5a) and one first removal unit (5b) for the heat transfer medium W, at least one secondary space (7) for the liquid phase P, at least one second feed unit (9) for the liquid phase P, at least one crystallization surface (13) which divides the primary space (3) and the secondary space (7), at least one second removal unit (15) for the target product and at least one application unit (11) for a liquid phase P0 essentially directly to the crystallization surface (13) or the surfaces of lines that conduct the heat transfer medium W. The present invention further relates to a process for removing a target product from a liquid phase P comprising the target product.
Abstract:
A heat exchanger (1) contains: a bundle of at least two heat exchanger tubes (3), a heat exchanger housing (5) surrounding the bundle of heat exchanger tubes (3), wherein a liquid heat-transfer medium (7) is passed around the bundle of heat exchanger tubes (3) in the heat exchanger housing (5), a heat exchanger cap (9) sealing the top of the heat exchanger housing (5), a heat exchanger bottom (11) sealing the bottom of the heat exchanger housing (5), a feed point (13) for the heat-transfer medium (7), an outlet (15) for the heat-transfer medium (7), an emergency relief port (17) disposed in proximity to the heat exchanger cap (9). The heat exchanger (1) contains a safety device (19) disposed in proximity to the heat exchanger bottom (11).
Abstract:
The present invention relates to a plant for performance of heterogeneously catalyzed gas phase reactions. The plant entails a reactor, at least one line leading into the reactor for introduction of reactants into the reactor, at least one first feed for providing at least one first reactant A, which leads into the line, at least one second feed for providing at least one second reactant B, which leads into the line, at least one third feed for providing a cycle gas G, which leads into the line, a temperature control unit which is disposed in the line upstream of the reactor and is for controlling the temperature of the first reactant A and/or second reactant B and/or cycle gas G prior to entry into the reactor and at least one outlet for products, by-products and/or unreacted reactants from the gas phase reaction.
Abstract:
A thermal separation process between a gas ascending in a separating column and a liquid descending in the separating column, which comprise (meth)acrylic monomers, wherein the separating column comprises a sequence of crossflow mass transfer trays, the crossflow mass transfer trays of which have passage orifices for the ascending gas in crossflow direction both in front of and beyond a downcomer for the descending liquid, and such crossflow mass transfer trays and one such crossflow mass transfer tray in a sequence of crossflow mass transfer trays present in a separating column.
Abstract:
What is described is a catalyst for preparation of an α,β-unsaturated carboxylic acid by gas phase oxidation of an α,β-unsaturated aldehyde, comprising a shaped support body with an active composition applied thereto, wherein the active composition coverage q q = Q ( 100 - Q ) S m is at most 0.3 mg/mm2, where Q is the active composition content of the catalyst in % by weight and Sm is the specific geometric surface area of the shaped support body in mm2/mg. Also described are a process for preparing the catalyst and a process for preparing an α,β-unsaturated carboxylic acid by gas phase oxidation of an α,β-unsaturated aldehyde over a fixed catalyst bed comprising a bed of the catalyst. The catalyst, with constantly high conversion of acrolein, reduces overoxidation to COx and increases the selectivity of acrylic acid formation.
Abstract:
The present disclosure includes a column (1) having a cylindrical, vertical column body (2) forming a column cavity (3), and a mass transfer tray (4) disposed in the column cavity (3) and forming a collecting area (5). The column (1) is characterized by a circulation device (9) having at least one drain orifice (10) formed in the column body (2) above the collecting area (5), a circulation line (11) in fluid connection with the drain orifice (10) and at least one recycling orifice (14; 14-1 to 14-3) which is in fluid connection with the circulation line (11) and is formed in the column body (2) above the collecting area (5). Also disclosed herein is a thermal separating process in which a gas ascends within a column (1) of the present disclosure, and a liquid descends within the column (1), said gas and/or liquid containing (meth)acrylic monomers.
Abstract:
A thermal separation process between a gas ascending in a separating column and a liquid descending in the separating column, which comprise (meth)acrylic monomers, wherein the separating column comprises a sequence of crossflow mass transfer trays, the crossflow mass transfer trays of which have passage orifices for the ascending gas in crossflow direction both in front of and beyond a downcomer for the descending liquid, and such crossflow mass transfer trays and one such crossflow mass transfer tray in a sequence of crossflow mass transfer trays present in a separating column.