Abstract:
A passive (self-pumped) phase conjugate mirror uses a third-order nonlinear polarization medium, either of the refractive type (effective nonlinear) or the actual nonlinear type, with an optical system of one or more mirrors to reflect back through the medium a coherent incident beam diffracted by the medium. With two mirrors, they may be aligned to form a linear optical cavity containing the nonlinear medium, or they may be so oriented on one side of the medium that the incident beam transmitted through the medium is reflected back through the medium at an angle with the incident beam, and diffracted light from the incident beam is reflected back through the medium in the opposite direction coincident with the incident beam. A passive phase conjugate mirror may replace an end mirror of an optical cavity for a laser gain medium. Phase distortions of the laser beam in the laser cavity are corrected by the passive phase conjugate mirror.
Abstract:
A laser which self-corrects for distortions introduced into the laser beam wavefronts by aberrations and time-varying phenomena internal to the laser. The improved laser includes a partially transmissive first reflecting element, an aperture stop, a lasing medium and a nonlinear phase conjugate reflecting device as the second reflecting element. During laser operation, aberrated wavefronts impinging upon the second reflecting element are reflected as the phase conjugate waveform thereof. The aperture stop restricts laser operation to the fundamental mode which allows only corrected, unaberrated waves to pass through the aperture stop and to subsequently exit the laser. Four embodiments are described utilizing stimulated Brillouin scattering (SBS), four-wave mixing, three-wave mixing and photon echo devices as the second reflecting element.
Abstract:
A detection apparatus and method for FMCW LIDAR employ signals that are modified so that low-cost and low-speed photodetector arrays, such as CCD or CMOS cameras, can be employed for range detection. The LIDAR is designed to measure the range to one or more targets and includes a single mode swept frequency laser (SFL), whose optical frequency is varied with time, as a result of which, a target beam which is reflected back by the one or more targets is shifted in frequency from a reference beam by an amount that is proportional to the relative range to the one or more targets. The reflected target beam(s) is/are combined with the reference beam and detected by the photodetector array. In the case of a sparse number of targets to be detected, Compressive Sensing (CS) techniques can be employed by a processor to reduce the number of measurements necessary to determine the range of each target.
Abstract:
Coupled-resonator optical waveguides (CROW) can be used to control a speed of an optical signal. In particular, the coupling distance between the resonators can be adjusted to precisely control a group delay of an optical wave. Systems and methods are described to control such coupling distance in a CROW.
Abstract:
The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.
Abstract:
A polymer material is exposed to radiation of a type that changes some aspect of the polymer's radiation passing properties. The radiation that caused the property change is then contained by the material. The property change can be self-focusing or self-trapping light can be used. In that case, the same light that causes the photopolymerization is contained by the change in index of refraction that is caused by the polymerization.
Abstract:
A method of designing phase shifting masks with improved resolution. Auxiliary transmissive phase regions with properly selected locations and dimensions are introduced to eliminate unwanted interference patterns. A usual opaque region between the transmissive features that are phase-conflicting to one another is partially or entirely replaced with a transmissive region of an opposite phase with respect to the phase of the transmissive features. In positive photoresist layouts, the light-absorbing features are partially or entirely made transmissive while an opposite and uniform phase is maintained throughout the transmissive background. Segmenting features with at least one auxiliary phase region and adjusting attenuation of different features can further improve the performance.
Abstract:
A wavelength selective optical fiber coupler having various applications in the field of optical communications is disclosed. The coupler is composed of dissimilar waveguides in close proximity. A light induced, permanent index of refraction grating is recorded in the coupler waist. The grating filters and transfers energy within a particular range of wavelengths from a first waveguide to a second waveguide. Transversely asymmetric gratings provide an efficient means of energy transfer. The coupler can be used to combine or multiplex a plurality of lasers operating at slightly different wavelengths into a single fiber. Other embodiments such as a dispersion compensator and gain flattening filter are disclosed.
Abstract:
A median circuit operates over a single-clock-cycle to determine the median of the group. Each value is compared with a plurality of other values. One of those other values become the eventual median. The possible median which is closest to all of the elements being compared is taken as the overall closest value and established as the median. Most specifically, this is done by applying the higher voltage of the pair to one end of a capacitor at the same time as a precharge. After the precharge is complete, the lower voltage of the pair is applied to the capacitor. The capacitor acts as a charge pump, lowering its other end by an amount proportional to the distance between the higher voltage of the pair and the lower voltage of the pair. A plurality of the capacitors are connected together, so that the output from the group of cells represents the average capacitors among all elements. The highest group represents the eventual median.