Abstract:
A polishing pad includes a polishing layer stack that has a polishing surface, a bottom surface, and an aperture from the polishing surface to the bottom surface. The polishing layer stack includes a polishing layer that has the polishing surface. A fluid-impermeable layer spans the aperture and the polishing pad. A first adhesive layer of a first adhesive material is in contact with and secures the bottom surface of the polishing layer to the fluid-impermeable layer. The first adhesive layer spans the aperture and the polishing pad. The light-transmitting body is positioned in the aperture and has a lower surface in contact with, is secured to the first adhesive layer, and is spaced apart from a side-wall of the aperture by a gap. An adhesive sealant of a different second material is disposed in and laterally fills the gap.
Abstract:
An edge ring and process for fabricating an edge ring are disclosed herein. In one embodiment, an edge ring includes an annular body and a plurality of thermal breaks disposed within the annular body. The thermal breaks are disposed perpendicular to a center line of the annular body of the edge ring.
Abstract:
A method of fabricating a polishing pad includes determining a desired distribution of voids to be introduced within a polymer matrix of a polishing layer of the polishing pad. Electronic control signals configured to be read by a 3D printer are generated which specify the locations where a polymer matrix precursor is to be deposited, and specify the locations of the desired distribution of voids where no material is to be deposited. A plurality of layers of the polymer matrix corresponding to the plurality of the first locations is successfully deposited with the 3D printer. Each layer of the plurality of layers of polymer matrix is deposited by ejecting a polymer matrix precursor from a nozzle. The polymer matrix precursor is solidified to form a solidified polymer matrix having the desired distribution of voids.
Abstract:
A polishing pad includes a polishing layer stack that has a polishing surface, a bottom surface, and an aperture from the polishing surface to the bottom surface. The polishing layer stack includes a polishing layer that has the polishing surface. A fluid-impermeable layer spans the aperture and the polishing pad. A first adhesive layer of a first adhesive material is in contact with and secures the bottom surface of the polishing layer to the fluid-impermeable layer. The first adhesive layer spans the aperture and the polishing pad. The light-transmitting body is positioned in the aperture and has a lower surface in contact with, is secured to the first adhesive layer, and is spaced apart from a side-wall of the aperture by a gap. An adhesive sealant of a different second material is disposed in and laterally fills the gap.
Abstract:
An electrostatic chuck includes a metal base plate, an electrostatic puck bonded to the metal base plate, and surface features on the surface of the electrostatic puck. The electrostatic puck includes an electrode embedded in the electrostatic puck. A surface of the electrostatic puck has a flatness of below 10 microns. The surface features include mesas and a sealing band around a perimeter of the electrostatic puck. The surface features have an average surface roughness of approximately 2-6 micro-inches. The corners of the surface features are not rounded.
Abstract:
An electrostatic chuck includes a metal base plate, an electrostatic puck bonded to the metal base plate, and surface features on the surface of the electrostatic puck. The electrostatic puck includes an electrode embedded in the electrostatic puck. A surface of the electrostatic puck has a flatness of below 10 microns. The surface features include mesas and a sealing band around a perimeter of the electrostatic puck. The surface features have an average surface roughness of approximately 2-6 micro-inches. The corners of the surface features are not rounded.
Abstract:
A method of fabricating a polishing pad includes determining a desired distribution of voids to be introduced within a polymer matrix of a polishing layer of the polishing pad. Electronic control signals configured to be read by a 3D printer are generated which specify the locations where a polymer matrix precursor is to be deposited, and specify the locations of the desired distribution of voids where no material is to be deposited. A plurality of layers of the polymer matrix corresponding to the plurality of the first locations is successfully deposited with the 3D printer. Each layer of the plurality of layers of polymer matrix is deposited by ejecting a polymer matrix precursor from a nozzle. The polymer matrix precursor is solidified to form a solidified polymer matrix having the desired distribution of voids.
Abstract:
An electrostatic chuck comprises a ceramic body having a first surface and a second surface that is on an opposite side of the ceramic body to the first surface, the ceramic body comprising a through-hole between the first surface and the second surface. The electrostatic chuck further comprises a thermally conductive base that supports the ceramic body and comprises a second hole that lines up with the through-hole, wherein the second hole is to fluidly couple to a source of heat transfer gas. The electrostatic chuck further comprises a bonding layer between the ceramic body and the thermally conductive base, the bonding layer comprising a space between an opening of the through-hole on the second surface and the gas introduction path.
Abstract:
A method of manufacturing a substrate support assembly comprises bonding a ceramic body to a thermally conductive base. The method further comprises metal bonding a protective layer to the ceramic body, wherein the protective layer is a sintered ceramic article.
Abstract:
A method of fabricating a polishing pad includes determining a desired distribution of voids to be introduced within a polymer matrix of a polishing layer of the polishing pad. Electronic control signals configured to be read by a 3D printer are generated which specify the locations where a polymer matrix precursor is to be deposited, and specify the locations of the desired distribution of voids where no material is to be deposited. A plurality of layers of the polymer matrix corresponding to the plurality of the first locations is successfully deposited with the 3D printer. Each layer of the plurality of layers of polymer matrix is deposited by ejecting a polymer matrix precursor from a nozzle. The polymer matrix precursor is solidified to form a solidified polymer matrix having the desired distribution of voids.