Abstract:
A substrate carrier system is provided. The substrate carrier system includes a substrate carrier body, an electrode assembly, a support base, and a controller. The substrate carrier body has a substrate supporting surface, and an electrode assembly is disposed in the substrate carrier body. The electrode assembly includes a plurality of laterally spaced apart electrode sets. Each electrode set includes a first electrode interleaved with a second electrode. The support base supports the substrate carrier body. The controller is configured to: select a first group of the electrode sets and a second group of the electrode sets from the plurality of the electrode sets; operate the first group of the electrode sets in a first chucking mode; simultaneously operate the second group of the electrode sets in a second chucking mode; and selectively switch at least one electrode set from the first group to the second group.
Abstract:
Embodiments of the present invention relates to apparatus and methods for a maskless lithography on a flexible substrate with active alignment. In one embodiment, a lithography apparatus includes a cylindrical roller rotatable about a central axis and configured to transfer a flexible substrate on a cylindrical substrate supporting surface. A plurality of printing units, each includes an image sensing device and an imaging printing device, may be positioned facing the substrate supporting surface. The plurality of printing units may capture images of pre-existing patterns and/or markers on the flexible substrate as the flexible substrate is being tramsferred continiously and exposure patterns for each printing unit may be adjusted “on-the-fly” according to the captured image, thus achieving active alignment.
Abstract:
A permanent magnetic mask chuck is described herein. The permanent magnetic mask chuck includes a body with a plurality of permanent magnets positioned therein. The permanent magnets can then deliver a magnetic force to a mask to position and hold the mask over or on the substrate for further deposition.
Abstract:
In large area plasma processing systems, process gases may be introduced to the chamber via the showerhead assembly which may be driven as an RF electrode. The gas feed tube, which is grounded, is electrically isolated from the showerhead. The gas feed tube may provide not only process gases, but also cleaning gases from a remote plasma source to the process chamber. The inside of the gas feed tube may remain at either a low RF field or a zero RF field to avoid premature gas breakdown within the gas feed tube that may lead to parasitic plasma formation between the gas source and the showerhead. By feeding the gas through an RF choke, the RF field and the processing gas may be introduced to the processing chamber through a common location and thus simplify the chamber design.
Abstract:
Embodiments disclosed herein generally relate to a slit valve door assembly for sealing an opening in a chamber. A slit valve door that is pressed against the chamber to seal the slit valve opening moves with the chamber as the slit valve opening shrinks so that an o-ring pressed between the slit valve door and the chamber may move with the slit valve door and the chamber. Thus, less rubbing of the o-ring against the chamber may occur. With less rubbing, fewer particles may be generated and the o-ring lifetime may be extended. With a longer lifetime for the o-ring, substrate throughput may be increased.
Abstract:
In large area plasma processing systems, process gases may be introduced to the chamber via the showerhead assembly which may be driven as an RF electrode. The gas feed tube, which is grounded, is electrically isolated from the showerhead. The gas feed tube may provide not only process gases, but also cleaning gases from a remote plasma source to the process chamber. The inside of the gas feed tube may remain at either a low RF field or a zero RF field to avoid premature gas breakdown within the gas feed tube that may lead to parasitic plasma formation between the gas source and the showerhead. By feeding the gas through an RF choke, the RF field and the processing gas may be introduced to the processing chamber through a common location and thus simplify the chamber design.
Abstract:
Embodiments described herein provide for light field displays and methods of forming light field displays where micro-LED arrays are each configured to provide at least a macro-pixel of effective native hardware resolution, where each macro-pixel provides single pixel of spatial resolution and plurality of pixels of angular resolution, and where each pixel of angular resolution includes a plurality of sub-pixels each provided by a directional collimating micro-LED device described herein.
Abstract:
Embodiments described herein generally relate to a temperature control system in a substrate support assembly. In one embodiment, a substrate support assembly is disclosed. The substrate support assembly includes a support plate assembly The support plate assembly includes a first fluid supply manifold, a second fluid supply manifold, a first fluid return manifold, a second fluid return manifold, a plurality of first fluid passages, a plurality of second fluid passages, and a fluid supply conduit. The plurality of first fluid passages extend from the first fluid supply manifold to the first fluid return manifold. The plurality of second fluid passages extend from the second fluid supply manifold to the second fluid return manifold. The plurality of fluid passages extend across an upper surface of the support plate assembly in an alternating manner. The fluid supply conduit is configured to supply a fluid to the fluid supply manifolds.
Abstract:
The present disclosure relates to methods and apparatus for an atomic layer deposition (ALD) processing chamber for device fabrication and methods for replacing a gas distribution plate and mask of the same. The ALD processing chamber has a slit valve configured to allow removal and replacement of a gas distribution plate and mask. The ALD processing chamber may also have actuators operable to move the gas distribution plate to and from a process position and a substrate support assembly operable to move the mask to and from a process position.
Abstract:
The present invention generally relates to TFTs and methods for fabricating TFTs. For either back channel etch TFTs or for etch stop TFTs, multiple layers for the passivation layer or the etch stop layers permits a very dense capping layer to be formed over a less dense back channel protection layer. The capping layer can be sufficiently dense so that few pin holes are present and thus, hydrogen may not pass through to the semiconductor layer. As such, hydrogen containing precursors may be used for the capping layer deposition.