Abstract:
A system for monitoring a clock input signal including a reference clock to be monitored, a flip-flop, a plurality of delay logic blocks, a sampling unit, and a comparison unit. The reference clock may have an expected maximum frequency. The flip-flop may be configured to generate a corresponding clock signal at a reduced frequency compared to the reference clock. The plurality of delay logic blocks may be configured to receive the reduced frequency clock signal and delay the signal for various amounts of time, each less than an expected period of the reference clock. The sampling unit may be configured to sample the signals output from the plurality of delay logic blocks. The comparison unit may be configured to receive the outputs of the flip-flop and the sampling unit and use these outputs to determine if the reference clock is running at an acceptable frequency compared to the expected frequency.
Abstract:
In an embodiment, a system is provided in which the private key is managed in hardware and is not visible to software. The system may provide hardware support for public key generation, digital signature generation, encryption/decryption, and large random prime number generation without revealing the private key to software. The private key may thus be more secure than software-based versions. In an embodiment, the private key and the hardware that has access to the private key may be integrated onto the same semiconductor substrate as an integrated circuit (e.g. a system on a chip (SOC)). The private key may not be available outside of the integrated circuit, and thus a nefarious third party faces high hurdles in attempting to obtain the private key.
Abstract:
An apparatus, a method, and a system are presented in which the apparatus includes an interface control circuit that may be configured to receive a message including a cryptographic keyword and a policy value. The policy value may include one or more data bits indicative of one or more policies that define allowable usage of the cryptographic keyword. The apparatus also includes a security circuit that may be configured to extract the cryptographic keyword and the policy value from the message, and to apply at least one policy of the one or more policies to usage of the cryptographic keyword in response to a determination that an authentication of the message succeeded.
Abstract:
An apparatus, a method, and a system are presented in which the apparatus includes an interface control circuit that may be configured to receive a message including a cryptographic keyword and a policy value. The policy value may include one or more data bits indicative of one or more policies that define allowable usage of the cryptographic keyword. The apparatus also includes a security circuit that may be configured to extract the cryptographic keyword and the policy value from the message, and to apply at least one policy of the one or more policies to usage of the cryptographic keyword in response to a determination that an authentication of the message succeeded.
Abstract:
An apparatus, a method, and a system are presented in which the apparatus includes an interface control circuit that may be configured to receive a message including a cryptographic keyword and a policy value. The policy value may include one or more data bits indicative of one or more policies that define allowable usage of the cryptographic keyword. The apparatus also includes a security circuit that may be configured to extract the cryptographic keyword and the policy value from the message, and to apply at least one policy of the one or more policies to usage of the cryptographic keyword in response to a determination that an authentication of the message succeeded.
Abstract:
Techniques are disclosed relating to processor power control and interrupts. In one embodiment, an apparatus includes a processor configured to assert an indicator that the processor is suspending execution of instructions until the processor receives an interrupt. In this embodiment, the apparatus includes power circuitry configured to alter the power provided to the processor based on the indicator. In this embodiment, the apparatus includes throttling circuitry configured to, in response to receiving a request from the power circuitry to alter the power provided to the processor, block the request until the end of a particular time interval subsequent to receipt of the request or de-assertion of the indicator. In some embodiments, the particular time interval corresponds to latency between the processor receiving an interrupt and de-asserting the indicator.
Abstract:
A system for monitoring a clock input signal including a reference clock to be monitored, a flip-flop, a plurality of delay logic blocks, a sampling unit, and a comparison unit. The reference clock may have an expected maximum frequency. The flip-flop may be configured to generate a corresponding clock signal at a reduced frequency compared to the reference clock. The plurality of delay logic blocks may be configured to receive the reduced frequency clock signal and delay the signal for various amounts of time, each less than an expected period of the reference clock. The sampling unit may be configured to sample the signals output from the plurality of delay logic blocks. The comparison unit may be configured to receive the outputs of the flip-flop and the sampling unit and use these outputs to determine if the reference clock is running at an acceptable frequency compared to the expected frequency.
Abstract:
An SOC implements a security enclave processor (SEP). The SEP may include a processor and one or more security peripherals. The SEP may be isolated from the rest of the SOC (e.g. one or more central processing units (CPUs) in the SOC, or application processors (APs) in the SOC). Access to the SEP may be strictly controlled by hardware. For example, a mechanism in which the CPUs/APs can only access a mailbox location in the SEP is described. The CPU/AP may write a message to the mailbox, which the SEP may read and respond to. The SEP may include one or more of the following in some embodiments: secure key management using wrapping keys, SEP control of boot and/or power management, and separate trust zones in memory.
Abstract:
Embodiments of a bridge circuit and system are disclosed that may allow for converting transactions from one communication protocol to another. The bridge circuit may be coupled to a first bus employing a first communication protocol, and a second bus employing a second communication protocol. The bridge circuit may be configured to convert transactions from the first communication protocol to the second communication protocol, and convert transaction from the second communication protocol to the first communication protocol. In one embodiment, the bridge circuit may be further configured to flag transactions that cannot be converted from the second communication protocol to the first communication protocol. In a further embodiment, an error circuit coupled to the bridge circuit may be configured to detect flagged transactions.
Abstract:
In an embodiment, a system is provided in which the private key is managed in hardware and is not visible to software. The system may provide hardware support for public key generation, digital signature generation, encryption/decryption, and large random prime number generation without revealing the private key to software. The private key may thus be more secure than software-based versions. In an embodiment, the private key and the hardware that has access to the private key may be integrated onto the same semiconductor substrate as an integrated circuit (e.g. a system on a chip (SOC)). The private key may not be available outside of the integrated circuit, and thus a nefarious third party faces high hurdles in attempting to obtain the private key.