Abstract:
Various methods and systems are provided for allocating time-frequency resources for downlink (DL) and uplink (UL) communications between base stations and mobile stations. Different forms of resource allocation messages including combinations of bitmaps and bitfields provide additional information about the resources and/or how they are assigned. In some implementations the resource allocation messages enable reduced overhead, which may ultimately improve transmission rates and/or the quality of transmissions.
Abstract:
A method for transmitting data in a multiple-input-multiple-output space-time coded communication using a mapping table mapping a plurality of symbols defining the communication to respective antennae from amongst a plurality of transmission antennae and to at least one other transmission resource. The mapping table may comprise Alamouti-coded primary segments and may also comprise secondary segments, comprising primary segments. The primary segments in the secondary segments may be defined in accordance to an Alamouti based code pattern applied at the segment level to define a segment-level Alamouti based code.
Abstract:
To effectively and efficiently provide control information, a broadcast pointer channel (BPCH) may be used to identify the type and perhaps relative location of control information that is being provided in a given frame structure, such as a sub-frame, frame, or superframe. A sub-frame (or like framing entity, such a frame or superframe) may have a BPCH and a corresponding system control information segment in which control information may reside. The system control information segment may have any number of control information blocks, wherein each control information block that is present may correspond to a particular type of control information. The BPCH is used to identify the type of control information that is present in a corresponding system control information segment, and if needed or desired, the relative locations of the various control information.
Abstract:
Methods described herein are for wireless communication systems. One aspect of the invention is directed to a method for a HARQ process, in which the HARQ process includes a first transmission of an encoder packet and at least one retransmission. The method involves allocating a transmission resource for each respective transmission. The method involves transmitting control information from a base station to a mobile station for each respective transmission. The control information includes information to uniquely identify the HARQ process and an identification of one of a time resource, a frequency resource and a time and frequency resource that is allocated for the transmission. In some embodiments of the invention, specific control information is signalled from a base station to a mobile station to enable RAS-HARQ operation. In some embodiments of the invention, retransmission signaling in included as part of regular unicast signaling used for both first transmission and retransmissions. In some embodiments of the invention, a 3-state acknowledgement channel and associated error recovery operation enables the base station and mobile station to recover from control signaling error and reduce packet loss.
Abstract:
To effectively and efficiently provide control information, a broadcast pointer channel (BPCH) may be used to identify the type and perhaps relative location of control information that is being provided in a given frame structure, such as a sub-frame, frame, or superframe. A sub-frame (or like framing entity, such a frame or superframe) may have a BPCH and a corresponding system control information segment in which control information may reside. The system control information segment may have any number of control information blocks, wherein each control information block that is present may correspond to a particular type of control information. The BPCH is used to identify the type of control information that is present in a corresponding system control information segment, and if needed or desired, the relative locations of the various control information.
Abstract:
A method and system are provided having an uplink control structure for providing channel estimation and data demodulation in a wireless communication network. The uplink control structures enable mobile terminals to communicate with corresponding base stations to perform various functions including obtaining initial system access, submitting a bandwidth request, triggering a continuation of negotiated service, or providing a proposed allocation re-configuration header. A dedicated random access channel is provided to communicatively couple the base station and the mobile terminal so that the mobile terminal can select a random access signaling identification. A resource request is received at the base station to uplink resource information from the mobile terminal and an initial access information request is received from the mobile terminal to configure the base station connection.
Abstract:
Methods described herein are for wireless communication systems. One aspect of the invention is directed to a method for a HARQ process, in which the HARQ process includes a first transmission of an encoder packet and at least one retransmission. The method involves allocating a transmission resource for each respective transmission. The method involves transmitting control information from a base station to a mobile station for each respective transmission. The control information includes information to uniquely identify the HARQ process and an identification of one of a time resource, a frequency resource and a time and frequency resource that is allocated for the transmission. In some embodiments of the invention, specific control information is signalled from a base station to a mobile station to enable RAS-HARQ operation. In some embodiments of the invention, retransmission signaling in included as part of regular unicast signaling used for both first transmission and retransmissions. In some embodiments of the invention, a 3-state acknowledgement channel and associated error recovery operation enables the base station and mobile station to recover from control signaling error and reduce packet loss.
Abstract:
Transmission of uplink control message for a wireless system. The uplink control message may be encoded according to one of multiple possible schemes. The choice of encoding scheme may be made based on the control message size and/or based on the available transmission resources and/or based on the detection scheme used on the receiving end. A modulation scheme may also be selected based on such factors. CDM may be used for certain control messages. Block code encoding, such as Reed-Muller encoding may be used for certain control messages. Different transmission resources may be allocated for different control message uses. The encoding specifics may be selected to obtain a certain hamming distance and/or size of the encoded message or based on other factors.
Abstract:
A method and system for achieving a link budget improvement in a diverse OFDM radio system by addressing the timing misalignment issue that can occur due to the differences in propagation time in signals between mobile stations and Radio Access Nodes. Timing misalignment is shared or split between the primary path to a primary Radio Access Node and a diverse path to a diverse Radio Access Node. The relative timing offsets between mobile stations are adjusted, the mobile stations are grouped into zones using a variety of different grouping techniques, and the transmission for each mobile station is scheduled, using one or more of a variety of scheduling techniques.
Abstract:
A method and system are provided having an uplink control structure and a pilot signal having minimal signal overhead for providing channel estimation and data demodulation in a wireless communication network. The uplink control structures enable mobile terminals to communicate with corresponding base stations to perform various functions including obtaining initial system access, submitting a bandwidth request, triggering a continuation of negotiated service, or providing a proposed allocation re-configuration header. A dedicated random access channel is provided to communicatively couple the base station and the mobile terminal so that the mobile terminal can select a random access signaling identification. A resource request is received at the base station to uplink resource information from the mobile terminal and an initial access information request is received from the mobile terminal to configure the base station connection. Pilot signals with varying density configurations are provided to include low density symbol patterns for multiple contiguous resource blocks and high density symbol patterns for single resource blocks.