Abstract:
Apparatus, systems and methods for camera integration with cover glass and for processing cover glass to provide a camera window for an electronic device are disclosed. A camera window can be integrated into the cover glass. The apparatus, systems and methods are especially suitable for cover glasses, or displays (e.g., LCD displays), assembled in small form factor electronic devices such as handheld electronic devices (e.g., mobile phones, media players, personal digital assistants, remote controls, etc.). The apparatus, systems and methods can also be used for cover glasses or displays for other relatively larger form factor electronic devices (e.g., portable computers, tablet computers, displays, monitors, televisions, etc.).
Abstract:
Clasp assemblies for bands (e.g., for watches) are disclosed. In some embodiments, a clasp assembly may include a plurality of pivotally interconnected links, where respective links are releasably coupled to one another, and spring assemblies disposed between respective links impart biasing forces between the respective links. In some embodiments, a clasp assembly may include a clasp body, a clasp cover, and a connecting arm pivotally coupled to the clasp body at a first end of the connecting arm, and pivotally coupled to the clasp cover at a second end of the connecting arm. The clasp assembly may include springs, magnets, elastomer members, and/or other mechanisms, components, or assemblies that impart a biasing force between the clasp body, the connecting arm, and/or the clasp cover.
Abstract:
A wearable band includes a woven material having two or more stretch regions. The different stretch regions can be formed by varying the tension on subsets of the warp threads, the weft threads, or both the warp and weft threads. A system for producing the woven material can include two or more tension control devices operably connected to a processing device. Each tension control device is configured to adjust the amount of tension in a respective subset of threads (e.g., warp threads) in the woven material during a weaving operation. The processing device is configured to select thread tension patterns for the subsets of threads used during the weaving operation. Each thread tension pattern includes tension settings for the subsets of threads, where at least one tension setting in one thread tension pattern differs from the tension settings in the other tension patterns.
Abstract:
An opaque cover is provided for a capacitive sensor. The cover includes a transparent substrate, and at least one white coating layer including white pigments disposed over at least one portion of the transparent substrate. The cover also includes a non-conductive mirror structure disposed over the at least one white coating layer. The non-conductive mirror structure includes a number of first dielectric layers having a first refractive index interleaved with second dielectric layers having a second refractive index. The first and second dielectric layers have dielectric constants below a threshold.
Abstract:
Systems and methods for strengthening a sapphire part are described herein. One embodiment may take the form of a method including orienting a first surface of a sapphire member relative to an ion implantation device and performing a first implantation step. The implanting step may include directing ions at the first surface of the sapphire member to embed them under the first surface. The systems and methods may also include one or more of heating the sapphire member to diffuse the implanted ions into deeper layers of sapphire member, cooling the sapphire member, and performing at least a second implantation step directing ions at the first surface of the sapphire member to embed the ions under the first surface.
Abstract:
An electronic device may be provided with a display. The display may be a liquid crystal display having a thin-film transistor layer and a color filter layer. The thin-film transistor layer may have diagonally opposed recesses in its edges that form diagonally opposed display driver ledges that protrude outwardly from under the color filter layer. Display driver circuitry may be mounted on the display driver ledges. Gate driver circuitry may be formed on the thin-film transistor layer. Recesses may be formed along the left and right edges of the display to form left and right display driver ledges to support the gate driver circuitry. A single display drive integrated circuit or multiple display driver integrated circuits may be mounted on each display driver ledge. The recesses may accommodate components in the electronic device such as a camera and audio jack or other components.
Abstract:
Forming a 3D topology by forming a monolayer of nano-particles on a stainless steel surface, masking the stainless steel surface forming at least one unmasked regions, the unmasked region having an average density of nano-particles less than a critical average density, and introducing a plurality of exogenous atoms into the stainless steel surface only in the unmasked regions, the exogenous atoms causing the associated metal lattice to expand and harden and have an increase corrosion resistance, thereby selectively forming a 3D topology on the stainless steel surface.
Abstract:
Clasp assemblies for bands (e.g., for watches) are disclosed. In some embodiments, a clasp assembly may include a plurality of pivotally interconnected links, where respective links are releasably coupled to one another, and spring assemblies disposed between respective links impart biasing forces between the respective links. In some embodiments, a clasp assembly may include a clasp body, a clasp cover, and a connecting arm pivotally coupled to the clasp body at a first end of the connecting arm, and pivotally coupled to the clasp cover at a second end of the connecting arm. The clasp assembly may include springs, magnets, elastomer members, and/or other mechanisms, components, or assemblies that impart a biasing force between the clasp body, the connecting arm, and/or the clasp cover.
Abstract:
An electronic device may include a display. The display may be an organic light-emitting diode display. The organic light-emitting diode display may have a substrate layer, a layer of organic light-emitting diode structures, and a layer of sealant. Vias may be formed in the substrate layer. The vias may be formed before completion of the display or after completion of the display. The vias may be filled with metal using electroplating or other metal deposition techniques. The vias may be connected to contacts on the rear surface of the display. The vias may be located in active regions of the display or inactive regions of the display. The display may include a top surface emission portion and a bottom surface emission portion.
Abstract:
A screen having a hydrophobic portion to resist the entry of liquid into an acoustic module and a hydrophilic portion to aid in the removal of liquid from an acoustic chamber is described. The screen is placed in an orifice in the acoustic module between the external environment and the internal acoustic chamber.