Abstract:
Presently described is a method for coupling an optical film to a substrate, laminated optical constructions comprising an optical film and an optical coupling layer disposed on a surface layer of the optical film, and coating compositions useful for optical an optical coupling layer. The coating compositions comprise at least 40 wt.-% inorganic nanoparticles having a refractive index of at least 1.85 and a polymeric silane surface treatment.
Abstract:
Lamination transfer films and methods for transferring a structured layer to a receptor substrate. The transfer films include a carrier substrate having a releasable surface, a sacrificial template layer applied to the releasable surface of the carrier substrate and having a non-planar structured surface, and a thermally stable backfill layer applied to the non-planar structured surface of the sacrificial template layer. The sacrificial template layer is capable of being removed from the backfill layer, such as via pyrolysis, while leaving the structured surface of the backfill layer substantially intact.
Abstract:
The disclosure relates to emissive displays and, in particular, to emissive displays that include a top surface (111) that has a diffusely reflective inactive surface (116) adjacent a diffusely reflective emissive surface (114). The emissive display further includes a polarization selective antireflection film component (120) that includes a linear absorbing polarizer (126), a reflective polarizer (124), and a quarter-wave retarder (122), and is positioned separated from the top surface. The disclosure also relates to issues arising from these antireflection film components, such as brightness efficiency loss and image degradation such as pixel blur. The enhanced antireflection stack performs well in commercial OLED displays, with a 20% or greater brightness gain, a 30% or greater ambient light reflectance gain and no visually apparent image degradation.
Abstract:
An emissive display comprising an OLED, a first birefringent reflective polarizer, a second birefringent reflective polarizer optically between the OLED and the first birefringent reflective polarizer, a first linear absorbing polarizer having a contrast ratio of less than 100:1 optically between the first birefringent reflective polarizer and the second birefringent reflective polarizer, a second linear absorbing polarizer having a contrast ratio of less than 100:1, where the first birefringent reflective polarizer is optically between the second linear absorbing polarizer and the first linear absorbing polarizer, and a structured optical film optically between the OLED and the second birefringent reflective polarizer.
Abstract:
A conducting film or device multilayer electrode includes a substrate and two transparent or semitransparent conductive layers separated by a transparent or semitransparent intervening layer. The intervening layer includes electrically conductive pathways between the first and second conductive layers to help reduce interfacial reflections occurring between particular layers in devices incorporating the conducting film or electrode.
Abstract:
The present disclosure provides novel light emitting devices including AMOLED displays, based on transparent OLED architecture, where a laminated nanostructured light extraction film can produce axial and integrated optical gains as well as improved angular luminance and color. Generally, the transparent AMOLED displays (100) with laminated sub-micron extractors (110a-c) include: (a) an extractor (110a) on a transparent substrate (112a) for light outcoupling on both sides of the transparent device (120); or (b) an extractor (110b) on a reflective film (112b) for providing light outcoupling off the bottom side of the bottom-emitting (BE) AMOLED (120); or (c) an extractor (110c) on a light absorbing film (112c) for providing outcoupling off the bottom side of the BE AMOLED (120) combined with improved ambient contrast.
Abstract:
A backlight that includes an illumination device that has at least one light source, a circular-mode reflective polarizer, and a specular partial reflector is disclosed. The specular partial reflector is disposed between the illumination device and the circular-mode reflective polarizer. Furthermore, the specular partial reflector is in substantially direct polarization communication with the circular-mode reflective polarizer.
Abstract:
Lamination transfer films and methods for transferring a structured layer to a receptor substrate. The transfer films include a carrier substrate having a releasable surface, a sacrificial template layer applied to the releasable surface of the carrier substrate and having a non-planar structured surface, and a thermally stable backfill layer applied to the non-planar structured surface of the sacrificial template layer. The sacrificial template layer is capable of being removed from the backfill layer, such as via pyrolysis, while leaving the structured surface of the backfill layer substantially intact.
Abstract:
A conducting film or device multilayer electrode includes a substrate and two transparent or semitransparent conductive layers separated by a transparent or semitransparent intervening layer. The intervening layer includes electrically conductive pathways between the first and second conductive layers to help reduce interfacial reflections occurring between particular layers in devices incorporating the conducting film or electrode.
Abstract:
An emissive article includes an OLED having a light emission surface, a circular polarizer, and a light extraction film optically between the OLED and the circular polarizer and being optically coupled to the light emission surface. The light extraction film includes a two-dimensional structured layer of extraction elements having a first index of refraction and a pitch in a range from 400 to 800 nm and a backfill layer including a material having a second index of refraction different from the first index of refraction.