摘要:
A method of manufacturing a structure includes a step of preparing a substrate including a silicon section, recessed sections and protruding sections formed by etching the silicon section, and a first insulating layer disposed on top portions of the protruding sections; a step of forming second insulating layers on sidewalls and bottom portions of the recessed sections; a step of forming seed layers containing metal above the bottom portions of the recessed sections; and a step of forming plating layers in such a manner that the recessed sections are filled with metal by electroplating. The second insulating layers contain an organopolysiloxane having at least one of a partial structure represented by the following formula (1) and a partial structure represented by the following formula (2): where R1, R2, and R3 represent alkyl groups identical to or different from each other.
摘要:
A method for producing a liquid composition containing pigment particles is provided including (1) maintaining a mixture of a solvent and pigments of at least two types including a pigment A insoluble in the solvent at a normal temperature and a normal pressure, and a pigment B soluble in the solvent at the normal temperature and the normal pressure, at a temperature exceeding the normal temperature and a pressure exceeding the normal pressure, thereby obtaining a pigment solution in which the pigment A and the pigment B are dissolved; and (2) cooling the pigment solution to a temperature precipitating a deposition of the pigment A or lower, thereby precipitating pigment particles containing the pigment A and the pigment B.
摘要:
An object of the present invention is to provide a light emitting device having high luminous efficiency and high stability. The light emitting device includes two electrodes and a light emitting layer interposed between the two electrodes, in which the light emitting layer contains luminous nanoparticles, and the luminous nanoparticles each have a particle diameter smaller than a thickness of the light emitting layer, and each include a metal coordination compound having a ligand formed of an organic compound.
摘要:
A method for producing a liquid composition containing pigment particles is provided including (1) maintaining a mixture of a solvent and pigments of at least two types including a pigment A insoluble in the solvent at a normal temperature and a normal pressure, and a pigment B soluble in the solvent at the normal temperature and the normal pressure, at a temperature exceeding the normal temperature and a pressure exceeding the normal pressure, thereby obtaining a pigment solution in which the pigment A and the pigment B are dissolved; and (2) cooling the pigment solution to a temperature precipitating a deposition of the pigment A or lower, thereby precipitating pigment particles containing the pigment A and the pigment B.
摘要:
A method for manufacturing a pigment dispersion includes mixing a solution in which a pigment is dissolved in an acid, and a reaction liquid that decreases a solubility of the pigment in the solution, in the presence of a dispersant for the pigment, and causing the pigment to precipitate. The solution and reaction liquid are mixed in the presence of the dispersant and a cyclic carbonate.
摘要:
A method for fabricating a microstructure array, such as a microlens array, and a mold for forming the microlens array, includes the steps of forming an array of microstructures with a curved profile in a discrete form on a substrate, and uniformly forming a continuous layer on the substrate and the discrete microstructures. Optically-unusable regions between the discrete microstructures, such as microlenses, can be readily reduced or eliminated by forming the continuous layer until flat portions between the microstructures disappear.
摘要:
In a method for manufacturing a dispersion which includes a dispersion medium and particles dispersed therein, the method includes bringing at least two types of liquids into contact with each other to form a reaction product comprising the particles, wherein the liquids are ejected from respective nozzles to be brought into contact with each other and then to flow in an integrated manner while forming a spiral flow.
摘要:
A fluid mixing apparatus is constituted by a plurality of flow passageways for conveying fluids, respectively, and jet outlets, corresponding to and communicating with the flow passageways, respectively, for jetting the fluids therefrom so that movement directions of the fluids intersect each other to mix the fluids. The jet outlets are provided at a surface of a substrate in which the flow passageways are provided. At least one of the flow passageways communicating with at least one of the jet outlets has a center axis partially shifted from a center axis of at least one of the jet outlets so as to incline a movement direction of a fluid jetted from at least one of the jet outlets with respect to the surface of the substrate.
摘要:
A mixing apparatus including a plurality of nozzle groups each formed of nozzles for ejecting the same fluid arranged in group, the nozzles being provided with openings for ejecting fluid, to cause the plurality of nozzle groups to separately eject a plurality of fluids to mix the fluids in areas on the extending lines of the nozzles, wherein the openings of the nozzles forming the nozzle groups are arranged along annular loci and the plurality of nozzle groups are arranged coaxially to each other, a plurality of supplying channels for supplying the plurality of fluids to the nozzle groups corresponding to the plurality of nozzle groups are annular in cross section in the direction perpendicular to the direction in which fluid supplied to the supplying channels flows and arranged coaxially to each other.
摘要:
A process for producing a colorant comprises the step of mixing a coloring material and a block copolymer in a flow channel of a microreactor to obtain a dispersion comprising a colorant as a dispersoid. The flow-mixing channel may have a cross-sectional area of not less than 0.5 mm2, and the ratio of the total cross-sectional areas of flow channels connected with the flow-mixing channel to the cross-sectional area of the flow-mixing channel ranges from 0.01 to 0.1, and a rectangular cross-section having a ratio of a flow channel depth to a flow channel width of not less than 0.5.