Abstract:
A cargo container is provided. The cargo container includes a frame part, a panel part, a plurality of lead screws and a plurality of guide brackets, so that the cargo container may be operated in a fixing mode or a folding mode according to loading or unloading of cargo. Thus, the volume in the folding mode may be reduced, and transport with stacked may be facilitated, so that a highly efficient cargo container may be provided that is easy to store and transport.
Abstract:
To improve the problems of conventional mine detectors, the purpose of the present invention is to provide a smart wearable mine detector comprising a human body antenna unit 100, a main microprocessor unit 200, a smart eyeglasses unit 300, a body-mounted LCD monitor unit 400, a wireless data transmission and reception unit 500, a belt-type power supply unit 600, a black box-type camera unit 700, and a security communication headset 800, the smart wearable mine detector: can be detachably worn on the head, torso, arm, waist, leg and the like of a body while a combat uniform is worn, thereby having excellent compatibility with conventional combat uniforms; enables a human body antenna unit which is detachably attached to a body and detects a mine through a super high-frequency RF beam and a neutron technique to be applied so as to detect the mine by identifying metals, nonmetals, and initial explosives of the mine; enables mines buried on the ground and under the ground to be detected in all directions (360°), and a distance, location, form, and materials of the mines to be exhibited on smart eyeglasses and a body-mounted LCD monitor unit in real time as 2D or 3D images such that a combatant can engage in battle avoiding mines, thereby improving combat efficiency by 90% when compared to existing combat efficiency; enables a battle to be carried out for three to seven days through a twin self-power supply system of a portable battery and a belt-type power supply unit even without need for charging power; and enables combat situations in a remote place to be monitored, in real time, in a remote combat command server, and allows each combatant to share combat information one to one such that it is possible to construct a smart combat command system capable of remotely commanding real combat situations as if one was on site of the battle.
Abstract:
A cargo container is provided. The cargo container includes a frame part, a panel part, a plurality of lead screws and a plurality of guide brackets, so that the cargo container may be operated in a fixing mode or a folding mode according to loading or unloading of cargo. Thus, the volume in the folding mode may be reduced, and transport with stacked may be facilitated, so that a highly efficient cargo container may be provided that is easy to store and transport.
Abstract:
Provided are a method and a device for transmitting and receiving a traffic stream in a wireless local area network (WLAN) system. Specifically, the device broadcasts a beacon frame including allocation information on a contention-free period (CFP) and allocation information on a contention period (CP) to a station (STA) and transmits a downlink traffic stream to the STA or receives an uplink traffic stream from the STA, based on the allocation information on the CFP. The allocation information on the CFP indicates that the downlink traffic stream is transmitted without performing a clear channel assessment (CCA) during the CFP and indicates that the uplink traffic stream is received with performing a CCA during the CFP.
Abstract:
A display device is disclosed. The display panel may comprise a display panel including a pixel area and a light refraction element disposed on the display panel. The light refraction element may have a first face facing the display panel and a second face disposed at an opposite side of the first face. The light refraction element may comprise a light refraction pattern disposed at the first face and having a first slanting face and a second slanting face, and the light refraction pattern can refract light emerging from the display panel.
Abstract:
To improve the problems of conventional mine detectors, the purpose of the present invention is to provide a smart wearable mine detector comprising a human body antenna unit 100, a main microprocessor unit 200, a smart eyeglasses unit 300, a body-mounted LCD monitor unit 400, a wireless data transmission and reception unit 500, a belt-type power supply unit 600, a black box-type camera unit 700, and a security communication headset 800, the smart wearable mine detector: can be detachably worn on the head, torso, arm, waist, leg and the like of a body while a combat uniform is worn, thereby having excellent compatibility with conventional combat uniforms; enables a human body antenna unit which is detachably attached to a body and detects a mine through a super high-frequency RF beam and a neutron technique to be applied so as to detect the mine by identifying metals, nonmetals, and initial explosives of the mine; enables mines buried on the ground and under the ground to be detected in all directions (360°), and a distance, location, form, and materials of the mines to be exhibited on smart eyeglasses and a body-mounted LCD monitor unit in real time as 2D or 3D images such that a combatant can engage in battle avoiding mines, thereby improving combat efficiency by 90% when compared to existing combat efficiency; enables a battle to be carried out for three to seven days through a twin self-power supply system of a portable battery and a belt-type power supply unit even without need for charging power; and enables combat situations in a remote place to be monitored, in real time, in a remote combat command server, and allows each combatant to share combat information one to one such that it is possible to construct a smart combat command system capable of remotely commanding real combat situations as if one was on site of the battle.
Abstract:
The present invention provides a smart device which can receive, by an image sensor of a camera, a visible light signal generated by a light-emitting source such as a lighting apparatus or a display, and which can transmit the visible light signal to another terminal and light-emitting source by an LED flash of the camera, thereby enabling transmission and reception of visible light communication by the camera, which is equipped as standard in the smart device, as well as enabling transmission and relay of data by connecting to RF communication such as WiFi, Bluetooth and UWB. Moreover, the present invention provides a system and a method for providing location-based services which measure an approximate current location of a user by an RF communication access point and measure the current location of the user in detail by receiving a visible light signal, which includes location information, from the light-emitting source, and thus can perform a high-precision indoor location recognition function linking visible light communication and RF communication and can provide guide image information, which comprises various additional information, on the basis of the location information of the user.
Abstract:
An NoC-based error correction apparatus capable of supporting a network interface that transmits a flit between Tx and Rx IP-elements includes: an encoder configured to receive a k-bit flit from the Tx IP-element and encodes the k-bit flit into n-bit data; and a decoder configured to receive the n-bit data, decode the n-bit data into the k-bit flit, and output the k-bit flit, the decoder having an error correction circuit for correcting an error in the n-bit data, wherein a t-bit adaptive error correction code having a variable error correction capability depending on the number of bits (n) of the received data is applied to the error correction circuit, the error correction capability is proportional to the number of bits (n) of the received data, and the t-bit error correction code has the number of bits proportional to the number of bits (n) of the received data.