Abstract:
A method for determining a relative dielectric constant of a ground to be searched for mines using a detector including at least one detection coil and a ground penetrating radar including at least one transmitter antenna and at least one receiver antenna and a detection method for detecting metal and non-metal objects in a ground using a mine detector including a metal detector and a ground penetrating radar, wherein the metal detector includes at least one detection coil with a coil plane which is moved parallel to the ground during detecting, and wherein the ground penetrating radar includes an antenna arrangement including at least one transmitter antenna and at least one receiver antenna. The method according to the invention for determining a relative dielectric constant enables a user to calibrate the detector quickly and in a known manner with respect to ground properties of the ground to be searched.
Abstract:
Disclosed is an apparatus that includes an electric power source that powers a Marx generator that is electrically coupled to a cathode emitter that is configured to discharge electrical potential into the earth. The apparatus also includes a load resistor that is coupled between the output of the Marx generator and either a relative ground or the input to the Marx generator.
Abstract:
A landmine-neutralization system has a vehicle including a water supply tank and an electrical power supply and an electro-discharge apparatus. The electro-discharge apparatus includes one or more electro-discharge nozzles each having a discharge chamber that has an inlet for receiving water from the water supply tank and an outlet, a first electrode extending into the discharge chamber and being electrically connected to one or more high-voltage capacitors that are connected to, and chargeable by, the electrical power supply, a second electrode proximate to the first electrode to define a gap between the first and second electrodes and a switch to cause the one or more capacitors to discharge across the gap between the electrodes to create a plasma bubble which expands to form a shockwave that escapes through one or more exit orifices of the one or more nozzles ahead of the plasma bubble to thereby neutralize a landmine.
Abstract:
A sensor system for detecting buried metal objects such as unexploded ordnance and the collection of data for the classification of the detected objects based on parameters extracted from the collected data includes a wheeled cart, positioned on which is an array of transmitter coils for transmitting a series of excitation signals onto the area of interest and a sensor array of receiver coils and preamplifiers for receiving back the resultant eddy current decays emitted by the buried objects, a computer, and data acquisition electronics for acquiring and storing the received decays as decay data within the computer. The incoming EMI data are digitized and a data fitting process is performed to extract fit location and shape parameters. These data can be transferred to other data analysis systems for comparison to previously recorded signatures to determine whether the received decay data from the area of interest is attributable to buried metal objects or conversely to an object constituting an anomaly.
Abstract:
A sensor system for detecting buried metal objects such as unexploded ordnance and the collection of data for the classification of the detected objects based on parameters extracted from the collected data includes a wheeled cart, positioned on which is an array of transmitter coils for transmitting a series of excitation signals onto the area of interest and a sensor array of receiver coils and preamplifiers for receiving back the resultant eddy current decays emitted by the buried objects, a computer, and data acquisition electronics for acquiring and storing the received decays as decay data within the computer. The incoming EMI data are digitized and a data fitting process is performed to extract fit location and shape parameters. These data can be transferred to other data analysis systems for comparison to previously recorded signatures to determine whether the received decay data from the area of interest is attributable to buried metal objects or conversely to an object constituting an anomaly.
Abstract:
An airborne mine countermeasure system includes a processor coupled to a memory having stored therein software instructions that, when executed by the processor, cause the processor to perform a series of image processing operations. The operations include obtaining input image data from an external image sensor, and extracting a sequence of 2-D slices from the input image data. The operations also include performing a 3-D connected region analysis on the sequence of 2-D slices, and extracting 3-D invariant features in the image data. The operations further include performing coarse filtering, performing fine recognition and outputting an image processing result having an indication of the presence of any mines within the input image data.
Abstract:
Provided is a mine detector detachably attached to the combat boot, which includes a main body detachably attached to the combat boot, and provided with a power supply, a signal transmitting part and a signal receiving part, and a detection part detachably attached to the combat boot, and provided with an antenna connected to the main body.
Abstract:
A small unmanned aerial system (sUAS) is used for remotely detecting concealed explosive devices—such as buried or otherwise hidden improvised explosive devices (IED)—and exploding or disarming the device while an operator of the sUAS, or other personnel, remain at a safe distance. The sUAS system can be operated at an extended, e.g., greater than 100 meters, standoff from the detection apparatus, explosive, and potential harm and may be operated by a single member of an explosive ordnance disposal (EOD) team. The sUAS may be implemented as an easy-to-operate, small vertical take-off and landing (VTOL) aircraft with a set of optical, thermal, and chemical detection modules for detecting an IED by aerial surveillance, confirming the existence of explosives, and providing options for detonating the IED electrically or by delivery of a payload (e.g., object or device) to neutralize the IED while maintaining the sUAS itself safe from harm.
Abstract:
A method and apparatus for detecting objects located underground. In one advantageous embodiment, a detection system detects objects having electrical non-linear characteristics located underground. The detection system comprises a transmitter unit, a receiver, and a processor. The transmitter transmits a plurality of pulsed radio frequency signals having a first frequency and a second frequency into a ground. The receiver monitors for a response radio frequency signal having a frequency equal to a difference between the first frequency and a second frequency, wherein the response radio frequency signal is generated by an object having the non-linear conductive characteristics in response to receiving the plurality of electromagnetic signals. The processor is connected to the transmitter unit and the receiver, wherein the processor controls an operation of the transmitter unit and the receiver, wherein the object is detected when the response radio frequency signal is detected by the receiver.
Abstract:
The presently disclosed systems and methods may be utilized in connection with several different sensor suites for detecting objects in the ground. Such systems and methods may be utilized in conjunction with a variety of military and commercial vehicles. In various embodiments, a sensing system may be carried by a vehicle in a stowed or deployed position. While in the stowed position, a segmented boom may have a relatively small vertical profile in comparison to the length of the boom when fully extended. According to various embodiments, in the deployed position the height of the sensor may be controlled to avoid obstructions. A hoist connected to the boom may be utilized to move the boom between the deployed and stowed positions.