Abstract:
A volume-filling mechanical structure for modifying a crash or impact comprising a honeycomb celled material expandable from a compact state to a expanded state and methods for operating the same.
Abstract:
A knee bolster system is capable of automatic extension and retraction during specified scenarios that are determined based on sensor input. A microprocessor electrically controls an actuator capable of extending at least one telescoping mechanism which is rigidly engaged to a knee bolster pad located in the lower portion of an instrument panel at knee height to an occupant. Each telescoping mechanism houses a plowing mechanism. This plowing mechanism generates reaction forces during actuation.
Abstract:
A pumping assembly is provided. The assembly includes a first movable element selectively movable within a first pump housing and an actuator including an active material. The active material is configured to undergo a change in attribute in response to an activation signal. The active material is operatively connected to the first movable element such that the change in attribute causes the first movable element to move within the first pump housing. In one example, the active material is a shape memory alloy material having a crystallographic phase that is changeable between Austenite and Martensite in response to the activation signal.
Abstract:
A device is provided that may be adapted to control or monitor the pressure level of a fluid system. The device includes a member composed of a shape memory alloy in a superelastic state. The member is configured to undergo a phase change from a high modulus Austenitic phase to a low modulus Martensitic phase and stretch in response to an activation stress. In one embodiment, the member defines two ends such that one end of the member is operatively connected to a fixed point. Another end of the member is operatively connected to a movable element. As the member stretches in response to the activation stress, the movable element is translated relative to the fixed point. In another embodiment, the member includes two plates with respective holes that are selectively aligned when the first and second plates stretch or deform in response to the activation stress.
Abstract:
A wiper assembly includes a wiper blade having a length and an active material actuator provided along a portion of the length of the wiper blade and coupled thereto. The active material actuator is configured to impart a degree of motion to a portion of the wiper blade in response to an electrical actuation signal.
Abstract:
A vehicle wiper assembly includes a wiper blade having a length, and an active material disposed along the length of the wiper blade and coupled thereto. The active material includes a shape memory alloy material with a crystallographic phase that is changeable between austenite and martensite, and is elastically deformable and operatively applies a spring force against a portion of the wiper blade when the crystallographic phase is martensite.
Abstract:
A device is provided that may be adapted to control or monitor the pressure level of a fluid system. The device includes a member composed of a shape memory alloy in a superelastic state. The member is configured to undergo a phase change from a high modulus Austenitic phase to a low modulus Martensitic phase and stretch in response to an activation stress. In one embodiment, the member defines two ends such that one end of the member is operatively connected to a fixed point. Another end of the member is operatively connected to a movable element. As the member stretches in response to the activation stress, the movable element is translated relative to the fixed point. In another embodiment, the member includes two plates with respective holes that are selectively aligned when the first and second plates stretch or deform in response to the activation stress.