Abstract:
The invention relates to a transmitter for transmission of digital data via a transmission line (10), comprising a current-driving digital/analogue converter (1) which is arranged at the input of the transmitter; a current-operated form filter (2) for forming the current pulses which are supplied from the digital/analogue converter; a line driver (5) which carries out current/voltage conversion; and a circuit for offset compensation (6), which is arranged in a feedback path (11). In order to improve the quality of the pulses which are transmitted at the output of the transmitter, the invention proposes that the internal signal processing of the transmitter be carried out on a current basis.
Abstract:
The invention relates to a controller for generating control signals (evload_o, odload_o, st_chgclk_o, clk_o , clkorfiford_i) synchronous with a continuous clock signal (clk_hr_i) input to it for a device (1) to be controlled synchronously with the clock signal (clk_hr_i), wherein the controller (SE) has: register means for registering at least one set signal (st_load_i, st_fiford_i), comprising a plurality of bit positions, counting means for counting edges of the clock signal (clk_hr_i) depending on one or a plurality of set signals respectively registered in the register means, and synchronization and output means for synchronizing a value counted by the counting means with the clock signal (clk_hr_i) and the registered set signal and outputting at least one of the control signals, wherein the register means, the counting means and the synchronization and output means are configured and connected to one another in such a way that the output control signal(s), depending on the respectively registered set signal, occupies (occupy) one of a plurality of temporal positions with a respective phase difference of an integral multiple of half a clock cycle synchronously with the leading or trailing edge of the clock signal. The controller can be applied in particular for controlling the synchronous parallel-serial converter for converting a parallel input signal comprising k bit positions into a serial output signal sequence synchronously with the clock signal (clk_hr_i), which converter is provided in a transmitting circuit in the interface circuit of a very fast DDR DRAM semiconductor memory component of the coming memory generation (e.g. DDR4).
Abstract:
A method generates a sampling clock signal in a communication block of a memory device having a plurality of communication blocks which are distributed in the memory device. The method includes receiving an input clock signal in the communication block, generating, only in response to the input clock signal, a local clock signal having a predetermined phase relationship with respect to the input clock signal, and generating the sampling clock signal based on the local clock signal.
Abstract:
A method of transmitting data between different clock domains includes receiving data bits on the basis of a receiving clock, sequentially storing the data bits in a ring buffer, simultaneously transmitting a number of the stored data bits from the ring buffer on the basis of a first transmitting clock, and transmitting the stored data bits from the ring buffer on the basis of a second transmitting clock.
Abstract:
A semiconductor memory chip includes: a reception interface section for receiving external data, command, and address signals in form of serial signal frames; an intermediate data buffer for intermediately storing write data and, optionally, write data mask bits to be written to a memory cell array; a memory core having a bank organized memory cell array; a decoder section for decoding an address derived from a signal frame received from the reception interface section for writing/reading data in/from one or more memory banks of the memory cell array in accordance with a write/read command within one or more received signal frames; and a frame decoder provided as an interface between the reception interface section and the memory core for decoding one or more commands included in one or more frames and outputting data addresses, command, and read/write access indication signals to the memory core and to the intermediate data buffer.
Abstract:
Methods and apparatus for timing recovery phase locked loops. One embodiment provides a phase detectors for generating phase difference signals on the basis of a received feedback signal and an input clock signal and an input data signal, respectively. A digital control unit is adapted to generate a control signal depending on the first and second phase difference signals A digitally controlled oscillator generates an output clock signal depending on the control signal. A feedback unit feeds the output clock signal to an input of the first phase detector as the feedback signal. And a data acquisition unit receives the data signal and the output clock signal of the digitally controlled oscillator to provide a data output signal synchronized to the output clock signal.
Abstract:
The present invention relates to a memory system having a memory device with two clock lines. One embodiment of the present invention provides a memory system comprising at least one memory device, a memory controller to control operation of the memory device, a first clock line which extends from a write clock output of the memory controller to a clock port of the memory device to provide a clock signal to the memory device, and a second clock line which extends from the clock port of the memory device to a read clock input of the memory controller to forward the clock signal applied to the clock port of the memory device back to a read clock input of the memory controller. The memory device may further comprise a synchronization circuit adapted to receive the clock signal from the memory controller and to, provide an output data synchronized to the forwarded clock signal.
Abstract:
In a semiconductor memory system having a loop forward architecture, the command, address and write data stream and the separate read data stream in form of protocol-based frames transmitted to/from memory chips in the following order: memory controller to the first memory chip, to the second memory chip, to the third memory chip and to the fourth memory chip and the read data stream is transferred from the fourth memory chip to the memory controller. With each command usually one of four memory chips is accessed for data processing, while three of four memory chips have only to fulfil a simple re-drive of CAwD stream and read data stream stream. By separately transferring a rank select signal not embedded in the frame from the memory controller to each memory chip a lot of more flexibility for these tasks can be achieved. Each memory chip includes a rank select switching section receiving the separately transferred rank select signal and decoding therefrom signal states which are used to select whether a CAwD signal stream is to be sent to the own memory core and processed or re-driven to the next memory chip and whether a read data stream is to be taken from its own memory core or from a read data input interface to be re-driven to the next memory chip.
Abstract:
The present invention includes a semiconductor memory modules and semiconductor memory systems using the same. The modules divide a conventional DIMM into a series of separate, smaller memory modules. Each memory module includes at least one semiconductor memory chip arranged on a substrate; CAwD signal input lines arranged on the substrate in a first predetermined line number and connecting one of the semiconductor memory chips to CAwD input signal pins on the substrate; and rD signal output lines arranged on the substrate in a second predetermined line number and connecting the one or a last semiconductor memory to a second number of rD output signal pins of the substrate. In a semiconductor memory system including the semiconductor memory modules, each memory module is separately connected to a memory controller by the CAwD signal input linesand the rD signal output lines in a respective point-to-point fashion.
Abstract:
A high-speed interface circuit is implemented in a semiconductor memory chip including a memory core, a first interface circuit section, and a second interface circuit section. The first interface circuit section is connectable to a write data-/command and address signal bus, includes a write data-/command and address re-driver/transmitter path (which may be transparent) and does not include any clock signal synchronizing circuitry, and a main write signal path including a serial-to-parallel converting and synchronizing device to synchronize with a reference clock signal received write data-/command and address signals and delivering the parallel converted write signals to the memory core. The second interface circuit section is connectable to a read data bus and includes a transparent read data re-driver/transmitter path for transmitting and re-driving received serial read data to a succeeding semiconductor memory chip and a main read signal path for inserting the parallel-to-serial converted read data from the memory core into the received serial read data stream, synchronizing the parallel-to-serial converted read data with the reference clock signal and providing the serialized read data stream to a serial read data input terminal of a corresponding second interface circuit section of a succeeding same memory chip or to a memory controller.