摘要:
A through hole capacitor at least including a substrate, an anode layer, a dielectric layer, a first cathode layer, and a second cathode layer is provided. The substrate has a plurality of through holes. The anode layer is disposed on the inner surface of at least one through hole, and the surface of the anode layer is a porous structure. The dielectric layer is disposed on the porous structure of the anode layer. The first cathode layer covers a surface of the dielectric layer. The second cathode layer covers a surface of the first cathode layer, and the conductivity of the second cathode layer is greater than that of the first cathode layer. The through hole capacitor can be used for impedance control, as the cathode layers of the through hole are used for signal transmission.
摘要:
A composite cathode foil is provided. The composite cathode foil includes an aluminum substrate, a metal layer formed thereon, a metal carbide layer formed on the metal layer, and a carbon layer formed on the metal carbide layer, wherein the metal of the metal layer is selected from the group consisting of IVB, VB and VIB groups. The invention also provides a solid electrolytic capacitor including the composite cathode foil.
摘要:
An electrode structure of a fuel cell for power generation comprises an anodic structure, a cathodic structure, and an ionic exchange membrane disposed between the anodic and cathodic structures. The anodic and cathodic structures respectively are formed by multi-layer structures, to reduce the fuel crossover from the anodic structure to the cathodic structure, to reduce the catalysts applied amount, and to increase an output electrical energy of the fuel cell. The multi-layer structure of the anodic structure comprises a thin platinum alloy black layer, a Pt alloy layer disposed on the carbon material, and a substrate.
摘要:
An electrode structure of a fuel cell for power generation comprises an anodic structure, a cathodic structure, and an ionic exchange membrane disposed between the anodic and cathodic structures. The anodic and cathodic structures respectively are formed by multi-layer structures, to reduce the fuel crossover from the anodic structure to the cathodic structure, to reduce the catalysts applied amount, and to increase an output electrical energy of the fuel cell. The multi-layer structure of the anodic structure comprises a thin platinum alloy black layer, a Pt alloy layer disposed on the carbon material, and a substrate.
摘要:
An electrode for an electrolytic capacitor is disclosed, including a substrate and a metal oxide formed on the surface of the substrate, wherein the metal oxide is formed on the surface of the substrate by a chemical reaction between a precursor and functional groups on the surface of the substrate. The surface of the substrate is covered with a metal oxide for increasing the capacitance of the electrode. The metal oxide-covered substrate is suitable for being used as an electrode of an electrolytic capacitor in that the metal oxide formed on the surface of the substrate by chemical linking is of excellent peeling resistance.
摘要:
The present invention relates to a composition for enhancing the utilization of catalysts in fuel cell, comprising catalysts, proton-exchanged ionic polymers, and coupling agents. The coupling agents are bonded to the catalysts or catalyst carriers by a B1 functional group and bonded to the proton-exchanged ionic polymers by a B2 functional group. The present invention also relates to a method for enhancing the utilization of catalysts in fuel cell, comprising the steps of (a) utrasonicating catalysts; (b) adding coupling agents to bond to the catalysts; (c) adding a perfluoro polymer to form a catalyst-coupling agent-perfluoro polymer complex whereby developing stable dispersion; wherein the coupling agents in step (b) are bonded to the catalysts by a B1 functional group and bonded to a perfluoro polymer by a B2 functional group. The present invention also provides a complex for enhancing the utilization of catalysts in fuel cell, comprising catalysts, coupling agents, and proton-exchanged ionic polymers, wherein the coupling agents are bonded to the catalysts by a B1 functional group and bonded to the perfluoro polymer by a B2 functional group to form a complex.
摘要:
A series of retardants on polymerization of aniline. The molecular structure of the retardant are aromatic compounds with meta-disubstitution. The two substituents of the retardant could be respectively selected from the group of amino group, hydroxyl group, thiol group, and mixtures thereof. A chemical composition for polyaniline preparation comprising: aniline monomer, oxidant, protic acid, retardant and solvent.
摘要:
A solid-state electrolytic capacitor and its producing method are disclosed. First, a capacitor element containing conducting polymer as the electrolyte sucks non-conjugate polymer precursors solution and the polymeric precursor polymerizes and crosslinks. Therefore, the conducting polymer combines non-conjugate polymer into a kind of interpenetration or semi-interpenetration network polymer material. Finally complete the manufacture of the capacitor by sealing the capacitor, and conducting the age process.
摘要:
An anode material is provided for a surface of an electrode. The anode material comprises carbon-containing substrates and unsaturated compounds. At least one chemical bond is formed between the unsaturated compounds and the surfaces of the carbon-containing substrates.
摘要:
An oxidizing agent useful for oxidative polymerization of high conductive polymers is provided. This oxidizing agent is a kind of organic metal complex formed of metal ion salts having oxidizing capability and nitrogen-containing compound having lone pair electrons with partial π-electron character. This organic metal complex has weak oxidizing strength for monomers at room temperature. As such, a mixture of the organic metal complex and the monomers has long-term stability under room temperature. While, at a high temperature, the organic metal complex provides proper oxidative polymerization capability for the monomers. The conductive polymers synthesized by the organic metal complex have excellent conductivity.