Abstract:
A three-phase alternator having a fan wheel (23) mounted with ball bearing (17) on the rotor shaft (18,21). The fan wheel, which is free to rotate about the rotor shaft, is coupled to it by a coupling between the V-belt pulley (22) and the fan wheel, which employs a few spaced ball bearings (24,25,26;27,28,29) and support a spring washer (32,36,39,40) which presses against outer races of the bearings and the fan wheel.
Abstract:
The electric machine, particularly a three-phase generator, has an exciter machine (26) in the form of a claw pole machine which supplies the exciter current necessary for the generator. The exciter machine is located to the side of the generator and has substantially smaller dimensions than the latter. At claws (28, 29) of the stator (25) which face the armature (32) of the exciter machine, permanent magnets (39) are located in the leakage flux area between the claws. Unwanted leakage fields are contained in this way.
Abstract:
The claw pole generator includes a drive shaft, two field spider halves (30.1, 30.2) mounted on the drive shaft, each of which include a disk-shaped plate (15) and claw-shaped magnetic pole elements (17) mounted on the disk-shaped plate (15), so that the magnetic pole elements (17) of each field spider half are engaged with each other, and a number of permanently magnetic pieces (27), each of which is arranged between adjacent magnetic pole elements (17). The disk-shaped plate (15) of at least one field spider half (13.1,13.2) is provided with a number of grooves (21), each of which extend in the plate (15) in a longitudinal direction of the drive shaft (5) and have an undercut (25). Each permanently magnetic piece (27) has a section which corresponds in shape to or which fits into one of the grooves (21), so that the permanently magnetic pieces (27) are insertable in respective grooves (21) and radially securable therein.
Abstract:
A synchronous machine, in particular a generator for a vehicle, has an excitation system with a plurality of electrically excited individual poles in a rotor, preferably in form of claw poles excited by at least one common excitation coil, in which for compensation of a magnetic stray flux, in the free spaces between the axially oriented claw poles permanent magnets are inserted at the axial ends of the pole plates of the rotor, so that the permanent magnets are supported by a holder against centrifugal forces and held by it, and therefore an especially simple and inexpensive holder is formed which considerably simplifies and facilitates the insertion of the permanent magnets.
Abstract:
To facilitate manufacture and increase the lifetime of a speed-dependent coupling between the ventilation or fan wheel (23) and drive shaft (18, 21) of the alternator, an inner race (25) is secured to the drive shaft, formed with two parallel running grooves (26, 27) in which two rows of balls (28, 29) are rolling. A pair of outer races is formed as ring-shaped elements (30, 31), of part-circular cross section, surrounding opposite, at least approximately quarter-circular zones of the balls, the outer races being axially biased towards each other by a pair of disk-shaped membranes (34, 35) to which the ventilation fan wheel (23) is attached, the membranes being biased towards each other by a biasing force (F), for example exerted by axial screws, securing the disk-shaped membranes together for resiliently biasing the ring-shaped elements towards each other and exerting axial pressure on the balls (28, 29) running in the grooves of the inner race and beneath the outer races. Sealing strips (50, 51, 52) can be placed between the membranes to prevent escape of lubricant of the coupling.
Abstract:
To improve the stability and robustness of a rectifier and to protect it against atmospheric influences, two plate-like, series-connected semiconductor diodes are soldered to a common tap electrode between them. An external lead wire is soldered to each of the remaining sides of the diodes. The entire soldered structure is embedded in a single mass of resin or plastic, the ends of the electrodes being configured to serve as anchoring elements in the plastic mass.
Abstract:
A semiconductor element, either a diode or a controlled rectifier, is electrically insulated relative to the heat sink on which it is mounted by either an insulating layer or an insulating diode of high thermal conductivity. A single unit including the heat sink with a plurality of diodes is used as a bridge rectifier in single phase or polyphase circuits.
Abstract:
To simplify connection of a starter motor to a 24V supply with a normal on-board network of 12V, an auxiliary rectifier and an auxiliary battery are connected in parallel to the output of an automotive alternator. The starter relay switch contacts are so arranged that, only upon operation of the starter switch, the two batteries are connected in series and then to the starter motor. The supply connections to the batteries are left undisturbed, feedback being prevented by the rectifiers which are connected to the output of the alternator.
Abstract:
A three-phase alternator has tapped armature windings, the tap points being connected to provide 12 V output and to a main battery. The end terminals of the armature windings are connected to an auxiliary rectifier, the output of which is connected to an auxiliary battery which is serially connected to the main battery, so that the two batteries are serially connected like the serial connection of the armature winding portions. A single voltage regulator, which may be connected to the auxiliary rectifier, or can be separately supplied by separately rectified current controls current flow through the field. The voltage regulator can be connected to the end terminals of the armature windings so that the field will be energized at the higher voltage level corresponding to the series voltages of both batteries, and permitting use of the auxiliary rectifier also as a field rectifier. A typical high voltage load in an automotive vehicle is the starter, used only intermittently and for short periods, but at high power levels.
Abstract:
To provide a dual-voltage network for the on-board electrical system of automotive vehicles, for example to provide a higher voltage for starting of the vehicle and a normal on-board voltage for operation of vehicle appliances such as lamps, fans, motors, and the like, while using only a single voltage regulator to control the charge voltage for the vehicle battery, a voltage doubler circuit is provided which is connected to the on-board network by a diode and a coupling capacitor connected to an a-c output of a vehicle alternator, the diode being connected between the d-c output and the rectifier connected to the alternator and the capacitor so that a voltage regulator, connected to the d-c output, can accurately control the output voltage of the alternator.