Abstract:
High-speed, high-performance, low-power transponders, serializers and deserializers are disclosed. A serializer may include a serdes framer interface (SFI) circuit, a clock multiplier unit, and a multiplexing circuit. A deserializer may include an input receiver circuit for receiving and adjusting an input data signal, a clock and data recovery circuit (CDR) for recovering clock and data signals, a demultiplexing circuit for splitting one or more data channels into a higher number of data channels, and a serdes framer interface (SFI) circuit for generating a reference channel and generating output data channels to be sent to a framer. The input receiver circuit may include a limiting amplifier. Each of the serializer and deserializer may further include a pseudo random pattern generator and error checker unit. The serializer and deserializer each may be integrated into its respective semiconductor chip or both may be integrated into a single semiconductor chip.
Abstract:
A communication system includes a multiplexer configured to multiplex a first set of data channels into a first data channel and to multiplex a second set of data channels into a second data channel, and a delay adjuster configured to adjustably delay the first data channel based on a delay adjust command. The communication system also includes a first amplifier configured to amplify the delayed first channel into a first output data channel, and a second amplifier configured to amplify the second data channel into a second output data channel. The communication system further includes a first driver configured to convert the first output data channel into a first drive signal to drive an optical modulator, and a second driver configured to convert the second output data channel into a second drive signal to drive the optical modulator.
Abstract:
A baseband signal converter device for an impulse radio receiver combines multiple converter circuits and an RF amplifier in a single integrated circuit package. Each converter circuit includes an integrator circuit that integrates a portion of each RF pulse during a sampling period triggered by a timing pulse generator. The integrator capacitor is isolated by a pair of Schottky diodes connected to a pair of load resistors. A current equalizer circuit equalizes the current flowing through the load resistors when the integrator is not sampling. Current steering logic transfers load current between the diodes and a constant bias circuit depending on whether a sampling pulse is present.
Abstract:
A precision timing generator includes a combiner that provides a timing signal by combining a coarse timing signal and a fine timing signal derived from a phase-shifted sinusoidal signal that has a desired phase shift. The coarse timing generator generates the coarse timing signal from a clock signal and a timing command input. The fine timing generator includes a sinusoidal-signal generator that receives the clock signal and generates a sinusoidal signal. The fine timing generator also includes a phase shifter that receives the sinusoidal signal and the timing command input and shifts the phase of the sinusoidal signal based on the timing input to generate the phase shifted sinusoidal signal.
Abstract:
A frame reference signal is produced as a function of a clock signal. A first timing generator generates a coarse timing signal having a nominal period and a transition occurring at a precise temporal position with respect to the nominal period. The nominal period is a function of the frame reference signal. The temporal position is a function of a first input timing command and the clock signal. A second timing generator generates at least one fine timing transition as a function of a second input timing command and the clock signal. A combiner circuit uses the coarse timing signal to select one of the at least one fine timing transitions to output a precise timing signal, wherein the precise timing signal has a high temporal precision with respect to the frame reference signal.
Abstract:
A superconducting gyroscope of the present invention includes a circuit which produces a magnetic field which is synchronous with the rate of rotation experienced by the gyroscope, a sensing circuit for converting the synchronous magnetic field into an electric signal, a first shield made of superconducting material for performing shielding of external stray fields, and a second shield disposed inside the first shield and made of superconducting material for expelling trapped residual magnetic flux. The synchronous magnetic field producing circuit includes a magnetic core shaped in a toroid with an air gap. The magnetic core may alternatively be formed in meandering shape by a plurality of separate magnetic core members with a plurality of air gaps therebetween. The sensing circuit includes at least one SQUID which can be directly coupled to the magnetic core. The sensing circuit may also include a superconducting pick-up coil surrounding a portion of the magnetic core for picking up the synchronous magnetic field and producing a London field, and an input coil magnetically coupled to the SQUID. The SQUID and the magnetic core and/or other elements can be fabricated on a single substrate or chip.
Abstract:
A multilayered integrated circuit chip carrier has a top layer, a signal line layer, a ground layer, a power conductor layer, and a bottom layer with a separating layer between adjacent layers. Each layer has coplanar conductive and dielectric portions, the separating layers being primarily dielectric. The top layer supports an integrated circuit chip and signal launcher pads on the bottom layer couple signal and power lines of a printed circuit board to spaced points about the bottom layer periphery and substantially constant signal line impedance is achieved. The signal line layer is separated from the power conductor layer by a ground plane layer. Conductive via through pads are placed in the separating layers to form a plurality of separate conductive paths from each of the bottom and top layers to each of the signal line and power conductor layers. Via through pads are also placed in the separating layers to break up cavities and thus increase cavity resonance above signal frequencies and are placed in the signal line layer to provide signal line isolation. Thermal columns of via pads in the separating layers and conductive portions in the other layers under the chip provide chip cooling. Large grounded conductive areas in the top and bottom layers reduce unwanted signal coupling to the external environment. A capacitive coupling on the top layer between a power conductor and ground provides power line isolation.
Abstract:
An example of a method for off-line calibration of a radio frequency (RF) communication system may include one or more of the following: enabling an off-line calibration mode for an RF communication system; generating an off-line calibration signal; applying to a frequency converter a first off-line calibration signal corresponding to the generated off-line calibration signal; translating the first off-line calibration signal into a second off-line calibration signal; evaluating one or more calibration adjustment signals associated with the calibration signal to reduce error in the communication system, wherein the one or more calibration adjustment signals may include an offset parameter associated with DC offset and an imbalance parameter associated with at least one of gain and phase imbalances; storing one or more calibration adjustment signals; disabling the off-line calibration mode; applying a communication signal; and adjusting the communication signal based on the stored one or more calibration adjustment signals.
Abstract:
An example of a radio frequency (RF) receiver system for communication may include a receive channel frequency converter configured to provide a second receive calibration signal during a receive calibration mode based on a first receive calibration signal and a receive reference signal. The system may include a receive pre-distortion module coupled to the receive channel frequency converter. The receive pre-distortion module may be configured to provide a fourth receive calibration signal during the receive calibration mode based on a third receive calibration signal and one or more receive calibration adjustment signals. The one or more receive calibration adjustment signals may comprise an offset parameter associated with DC offset and an imbalance parameter associated with at least one of gain and phase imbalances.
Abstract:
A radio frequency transceiver for off-line transmit and receive calibrations includes: a transmit pre-distortion module configured to receive a transmit calibration signal during a transmit calibration mode, a transmit communication signal during a transmit communication operation mode, and one or more transmit calibration adjustment signals; a transmit channel frequency converter; and a transmit calibration module configured to provide the one or more transmit calibration adjustment signals and the transmit calibration signal to the transmit pre-distortion module. It may also include a receive channel frequency converter; a receive pre-distortion module configured to receive a receive calibration signal during the receive calibration mode, a receive communication signal during a receive communication operation mode, and one or more receive calibration adjustment signals; and a receive calibration module configured to provide the one or more receive calibration adjustment signals to the receive pre-distortion module and a receive calibration signal to the transmit pre-distortion module.