Abstract:
An atomic inertial interferometer comprises a laser that emits a CW beam; a modulator that modulates the CW beam; a filter and delay mechanism that receives the modulated beam, and includes a first pathway and a second pathway longer than the first pathway; a comb generator that receives the modulated beam, and produces a frequency comb; and a comb drive coupled to the comb generator to generate a multiple of a comb repetition rate, the comb drive including a HF source coupled to a bandpass filter. A vacuum cell holds a sample of cold atoms. The frequency comb counter-propagates with respect to the modulated beam to provide velocity slicing of the cold atoms such that a given temperature distribution of the cold atoms is sliced into a plurality of narrow temperature distributions that are probed individually and in parallel, to extract an interference signal from the narrow temperature distributions.
Abstract:
A MEMS gyrocompass and method are provided to mitigate systematic error in determination of a north angle. The MEMS gyrocompass includes one or more MEMS gyroscopes having a sense axis within a reference plane. Samples from an output of the MEMS gyroscope are obtained in at least two angles of rotation about an axis perpendicular to the reference plane. First fit coefficients are determined by fitting samples with first fitting functions determined as function of time. Second fit coefficients are determined by fitting components of earth rotation rate projected on the reference plane based on samples obtained by all the MEMS gyroscopes, which fitting is performed with a second fitting function determined as a function of rotation angle of the MEMS gyroscope with respect to a reference angle. The north angle is determined as an angle between the reference angle and true north based on the second fit coefficients.
Abstract:
An atomic interferometer includes: an optical system including an optical modulating device that includes: an optical fiber for a first laser beam to propagate therein; and a frequency shifter connected to the optical fiber and configured to shift the frequency of the first laser beam, the optical system being configured to generate a moving standing light wave from counter-propagation of the first laser beam from the optical modulating device and a second laser beam; and an interference system for making an atomic beam interact with three or more moving standing light waves including the moving standing light wave.
Abstract:
An atom interferometer that utilizes two counterpropagating continuous 3D-cooled atom beams which are directed into a vacuum chamber. Momentum-transfer laser (MTL) beams are directed into the atom beams to produce a predetermined recoil and subsequently generate an interference signal that is read by a photodetector and analyzed by a processor to provide information regarding inertial forces such as acceleration and rotation rate. Reversal of the recoil direction of the MTL beams allows for the suppression of errors in the measurement of the inertial forces.
Abstract:
An atomic interferometer and methods for measuring phase shifts in interference fringes using the same. The atomic interferometer has a laser beam traversing an ensemble of atoms along a first path and an optical components train with at least one alignment-insensitive beam routing element configured to reflect the laser beam along a second path that is anti-parallel with respect to the first laser beam path. Any excursion from parallelism of the second beam path with respect to the first is rigorously independent of variation of the first laser beam path in yaw parallel to an underlying plane.
Abstract:
Embodiments described herein provide for a method of launching atoms in an atom interferometer. The method includes determining a direction of the total effective acceleration force on the atoms, controlling a direction of launch of the atoms for measurement in the atom interferometer based on the direction of the total effective acceleration force, and obtaining measurements from the atoms.
Abstract:
Systems and methods for eliminating multi-path errors from atomic inertial sensors are provided. In certain embodiments, a system for performing atom interferometry includes a vacuum cell containing multiple atoms and a first plurality of lasers configured to trap the atoms within the vacuum cell. The system further includes a second plurality of lasers configured to impart momentum to the atoms and direct the atoms down multiple paths, wherein a primary path in the multiple paths has a first and second component that converge at a converging point, wherein a diverging part of the primary path in which the first and second components are diverging is asymmetrical with respect to a converging part of the primary path in which the first and second components are converging, such that only the first and second components converge at the converging point wherein other paths do not converge at the converging point.
Abstract:
A solid-state gyroscope apparatus based on ensembles of negatively charged nitrogen-vacancy (NV−) centers in diamond and methods of detection are provided. In one method, rotation of the NV− symmetry axis will induce Berry phase shifts in the NV− electronic ground-state coherences proportional to the solid angle subtended by the symmetry axis. A second method uses a modified Ramsey scheme where Berry phase shifts in the 14N hyperfine sublevels are employed.
Abstract:
Embodiments described herein provide for a method of launching atoms in an atom interferometer. The method includes determining a direction of the total effective acceleration force on the atoms, controlling a direction of launch of the atoms for measurement in the atom interferometer based on the direction of the total effective acceleration force, and obtaining measurements from the atoms.
Abstract:
Compact inertial measurement systems and methods based on atom interferometry. Certain examples provide a combination atomic accelerometer-gyroscope configured to recapture and cycle atom samples through atom interferometers arranged to allow the next measurement to use the atoms from the previous measurement. Examples of the apparatus provide inertial measurements indicative of rotation for different inertial axes by applying atom interferometry to a plurality of atom samples launched in opposite directions to allow for measurement of both acceleration and rotation rates. In some examples, the inertial measurement apparatus provide a combined atomic gyroscope and an atomic accelerometer in a compact six Degrees of Freedom (6 DOF) IMU.