Abstract:
An interference based dynamic channel assignment scheme for a wireless communication network, for self configuring dynamic channel assignment of a plurality of channels, comprises the steps of: prioritizing a channel list and prioritizing a selected subset of the prioritized channel list. In further enhancements of the present invention, prioritizing a channel list is distributed on a per cell/sector basis so that prioritization is independent of frequency usage information from other cells/sectors and prioritization is based upon uplink and downlink characteristics.
Abstract:
A Code-Division Multiple Access (CDMA) receiver is disclosed which removes the pilot signal from the received signal. The pilot signal is defined by its multipath parameters (amplitudes, phase shift and delays) and its signature sequence. Since this information is known at the user's receiver terminal (i.e., handset), the pilot signals of the interfering multipath components of the baseband received signal are detected and removed prior to demodulation of the desired multipath component. The pilot signal may be cancelled prior to or following the data accumulation stage.
Abstract:
A Multi-Code (MC) Code Division Multiple Access (CDMA) receiver receives N (where N>1) encoded signal channels over multiple air signal paths. In the MC-CDMA receiver, once a timing correlator means has recovered the timing and control signals for the data signal received over any particular signal path, those timing and control signals are utilized by each of the N data (second type) correlator means for decoding and despreading an associated one of the N data signal channels received over that path.
Abstract:
A method and apparatus providing communications between mobile units and other communications devices, is disclosed wherein, in response to a request to call a mobile unit from an originating communications device, a paging signal is sent via a global communications network and received by a mobile unit. The paging signal contains caller and callee identification codes, which are decoded by the mobile unit. A paging response signal, in the form of a reverse call setup signal, is then transmitted from the mobile unit to the originating communications device. Transmission of the paging signal is preferably stopped when a correspondence condition exists such that the caller and callee identification codes of the paging signal correspond to the caller and caller identification codes of the paging response signal.
Abstract:
Ghosts are canceled in received analog TV (for IDTV, EDTV, and HDTV) signals by utilizing the fact that there are short periods of time without the analog signals (the horizontal flyback interval between the lines) to process the received signal on a line-to-line basis using a finite impulse response (FIR) or an infinite impulse response (IIR) equalizer. This line-by-line processing (which can be implemented by periodic cleansing of the equalizer) overcomes the limitations of standard equalizers to allow for 40-50 dB of suppression of ghosts, even with nulls in the spectrum, as long as the ghost delay is less than the period of time without the analog signal. Furthermore, by using time inversion in combination with line-by-line processing, the stability problem of the conventional IIR equalizer is eliminated. The IIR equalizer may be implemented on a single digital integrated circuit. Alternatively, an FIR equalizer can be used which, although it may require multiple chips (i.e., more taps), can acquire and adapt to the ghosted channel more rapidly than an IIR equalizer. With line-by-line processing, FIR and IIR equalizers can eliminate any ghost with delays up to 11 .mu.sec in IDTV or EDTV. For larger delays, a standard IIR or FIR equalizer can be used as a preprocessor to eliminate small ghosts and an adaptive antenna can be used to eliminate large ghosts. Thus, with these techniques, the ghosting problem can be eliminated in all TV receivers.
Abstract:
An array of two or more piezoelectric drivers generates shear waves in a region of interest of a human undergoing a MRE test. The use of the array of drivers allows for better diagnosis of disease of the humans or animals.
Abstract:
The present invention concerns the efficient use of the radio spectrum in wireless communications. Channel occupancy data and channel availability data concerning a specific base station and its neighbors are used to assign frequency channels to mobile units and/or base stations. The channel occupancy and availability data may be located at a base station or at a mobile switching center. Channels are preferably assigned as channel pairs.
Abstract:
A code division multiple access system provides a way of allocating an increased data rate to a requesting mobile station. A mobile station requesting a data rate in excess of the basic data rate sends received pilot strength data for its base station and base stations in adjacent cells. The received pilot strength data is used to determine an increased data rate to be assigned to the requesting mobile station. One feature assigns an increased data rate based on the difference in the maximum received received pilot strength data from a non-active base station (one not in connection with the mobile station) and the maximum received pilot strength data from an active base station (one in connection with the mobile station). Yet another feature utilizes a series of threshold levels, each pair of levels associated with a different permitted data rate. Using the received pilot strength data, a data rate is determined which satisfies all adjacent cell interference concerns. Another feature uses average adjacent cell capacity loads rather than threshold levels, together with the received pilot strength data, to determine the appropriate increased data rate to be assigned to a user requesting an increased data rate.
Abstract:
Co-Existence Dynamic Channel Assignment (DCA) techniques for overlay macrocellular systems facilitate the coexistence of embedded autonomous underlay microcellular (e.g., indoor) systems. The Co-existence of the two systems without excessive mutual interference is achieved through statistical systematic exclusion of predefined subsets of the universal channel set from the dynamic assignment to the overlay macrocells. The sets of channels are made available to the underlay systems. The exclusion is done with minimal DCA performance degradation.
Abstract:
Co-Existence Dynamic Channel Assignment (DCA) techniques for overlay macrocellular systems facilitate the coexistence of embedded autonomous underlay microcellular (e.g., indoor) systems. The co-existence of the two systems without excessive mutual interference is achieved through systematic deterministic exclusion of predefined subsets of the universal channel set from the dynamic assignment to the overlay macrocells. The sets of channels are made available to the underlay systems. The exclusion is done with minimal DCA performance degradation. Multiple deterministic exclusions methods are described.