Abstract:
The present invention concerns the efficient use of the radio spectrum in wireless communications. Channel occupancy data and channel availability data concerning a specific base station and its neighbors are used to assign frequency channels to mobile units and/or base stations. The channel occupancy and availability data may be located at a base station or at a mobile switching center. Channels are preferably assigned as channel pairs.
Abstract:
The present invention concerns the efficient use of the radio spectrum in wireless communications. Channel occupancy data and channel availability data concerning a specific base station and its neighbors are used to assign frequency channels to mobile units and/or base stations. The channel occupancy and availability data may be located at a base station or at a mobile switching center. Channels are preferably assigned as channel pairs.
Abstract:
A base transceiver station (BTS) includes a first transceiver configured to communicate with a first mobile station on a first frequency band, and a second transceiver configured to communicate with a second mobile station on a second frequency band. These bands can be, for example, 900 Mhz and 1800 Mhz frequency bands. The BTS includes a processor configured to instruct the first transceiver to receive inbound information from the first mobile station and to transmit outbound information to the first mobile station and to instruct the second transceiver to receive inbound information from the second mobile station and to transmit outbound information to the second mobile station. A trunk module is coupled to the processor and configured to communicate the first information and the second information with a base station controller (BSC). The base station controller is coupled to the BTS and configured to communicate the inbound information and outbound information with the BTS. In one embodiment, a time division multiplexing technique is used to communicate the inbound information and outbound information between the BTS and BSC. Advantages of the invention include the ability to incorporate multiple transceivers communicating over multiple frequency bands in a single BTS. This allows easier placement of the various transceivers in a single location and improves cellular service to mobile stations.
Abstract:
A first communication device is in communication with a second communication device. The communication may be characterized by a first and a second characteristic that are affected by a transmit power of the first communication device, each characteristic having an upper and a lower bound. The transmit power of the first communication device is delayed from being adjusted to bring the communication within the upper and lower bounds of the first criteria and outside the upper and lower bounds of the second criteria when a contrary adjustment of the transmit power of the first communication device was performed until a predetermined amount of time has expired since the contrary adjustment. Thus, unnecessarily repetitive power adjustments are avoided.
Abstract:
A cellular network includes a receiver configured to receive inbound information from a mobile station. A correlator is coupled to the receiver and configured to correlate the inbound information against expected information to generate a correlator signal. An interpolator is coupled to the correlator and configured to interpolate the correlator signal to generate an interpolator signal. A memory is coupled to the interpolator and configured to store the interpolator signal. A processor is coupled to the memory and configured to process the interpolator signal to determine a position of the mobile station. Additional embodiments track the position of the mobile station based on cellular hand off and mobile station position over time. The cellular network can transfer the mobile station from the microcellular network to the macrocellular network if the mobile station is moving rapidly. The cellular network can transfer the mobile station from the macrocellular network to the microcellular network if the mobile station is moving slowly. Advantages of the invention include the ability to reduce control traffic among the network elements including the BTS, BSC and MSC. As a result, the inventive network can handle more telephone calls and can organize the calls more efficiently than in traditional cellular networks.