Abstract:
A bit interleaver, a bit-interleaved coded modulation (BICM) device and a bit interleaving method are disclosed herein. The bit interleaver includes a first memory, a processor, and a second memory. The first memory stores a low-density parity check (LDPC) codeword having a length of 16200 and a code rate of 4/15. The processor generates an interleaved codeword by interleaving the LDPC codeword on a bit group basis. The size of the bit group corresponds to a parallel factor of the LDPC codeword. The second memory provides the interleaved codeword to a modulator for 64-symbol mapping.
Abstract:
A bit interleaver, a bit-interleaved coded modulation (BICM) device and a bit interleaving method are disclosed herein. The bit interleaver includes a first memory, a processor, and a second memory. The first memory stores a low-density parity check (LDPC) codeword having a length of 16200 and a code rate of 4/15. The processor generates an interleaved codeword by interleaving the LDPC codeword on a bit group basis. The size of the bit group corresponds to a parallel factor of the LDPC codeword. The second memory provides the interleaved codeword to a modulator for 256-symbol mapping.
Abstract:
A bit interleaver, a bit-interleaved coded modulation (BICM) device and a bit interleaving method are disclosed herein. The bit interleaver includes a first memory, a processor, and a second memory. The first memory stores a low-density parity check (LDPC) codeword having a length of 16200 and a code rate of 2/15. The processor generates an interleaved codeword by interleaving the LDPC codeword on a bit group basis. The size of the bit group corresponds to a parallel factor of the LDPC codeword. The second memory provides the interleaved codeword to a modulator for 64-symbol mapping.
Abstract:
A low density parity check (LDPC) encoder, an LDPC decoder, and an LDPC encoding method are disclosed. The LDPC encoder includes first memory, second memory, and a processor. The first memory stores an LDPC codeword having a length of 64800 and a code rate of 2/15. The second memory is initialized to 0. The processor generates the LDPC codeword corresponding to information bits by performing accumulation with respect to the second memory using a sequence corresponding to a parity check matrix (PCM).
Abstract:
A broadcasting-communication data receiving apparatus for receiving mixed signals including original signals and additional signals. The apparatus includes a receiver for receiving the mixed signals and outputting mixed signals of a predetermined band, a first demodulator for receiving the mixed signals of the predetermined band and generating baseband mixed signals, an original data generator for receiving the baseband mixed signals and generating original data, an original signal generator for receiving the original data and generating baseband original signals, a modulator for receiving the baseband original signals and generating original signals of a predetermined band, a subtractor for subtracting the original and mixed signals of the predetermined band to thereby generate additional signals of a predetermined band, a second demodulator for receiving the additional signals of the predetermined band and generating baseband additional signals, and an additional data generator for receiving the baseband additional signals and generating additional data.
Abstract:
A method of a first terminal may comprise: receiving a higher layer message including basic sidelink synchronization signal block (S-SSB) information on a basic S-SSB transmitted in an unlicensed band; obtaining a channel occupancy time (COT) through a listen-before-talk (LBT) procedure in the unlicensed band; and transmitting COT information including additional S-SSB configuration information to other terminals, wherein the basic S-SSB information includes information on a transmission occasion of the basic S-SSB and information on a frequency of the basic S-SSB, and the additional S-SSB configuration information includes information for transmission of an additional S-SSB that is transmitted in addition to the basic S-SSB within the COT.
Abstract:
A modulator and a modulation method using a non-uniform 16-symbol signal constellation are disclosed. The modulator includes a memory and a processor. The memory receives a codeword corresponding to a low-density parity check (LDPC) code having a code rate of 4/15. The processor maps the codeword to 16 symbols of the non-uniform 16-symbol signal constellation on a 4-bit basis.
Abstract:
Disclosed herein is a method for signal configuration. The method may include evenly dividing, by a signal-bit configuration block, data or information forming signal bits or a signal bitstring and transferring the same to N multiple channels; mapping, by a first spatial path configuration block, a coded bitstring, which is generated through coding and signal processing of the data or information forming the signal bits or the signal bitstring, to cells corresponding to M antennas; and configuring, by a frequency path configuration block, the transmission paths of the cells.
Abstract:
A low density parity check (LDPC) encoder, an LDPC decoder, and an LDPC encoding method are disclosed. The LDPC encoder includes first memory, second memory, and a processor. The first memory stores an LDPC codeword having a length of 16200 and a code rate of 3/15. The second memory is initialized to 0. The processor generates the LDPC codeword corresponding to information bits by performing accumulation with respect to the second memory using a sequence corresponding to a parity check matrix (PCM).
Abstract:
A parity interleaving apparatus and method for variable length signaling information are disclosed. A parity interleaving apparatus according to an embodiment of the present invention includes a processor configured to generate a parity bit string for parity puncturing by segmenting parity bits of an LDPC codeword whose length is 16200 and whose code rate is 3/15, into a plurality of groups, and group-wise interleaving the groups using an order of group-wise interleaving; and memory configured to provide the parity bit string for parity puncturing to a parity puncturing unit.