Abstract:
An electronic device may have control circuitry that uses a reflectometer to measure antenna impedance during operation. The reflectometer may have a directional coupler that is coupled between radio-frequency transceiver circuitry and an antenna. A calibration circuit may be coupled between the directional coupler and the antenna. The calibration circuit may have a first port coupled to the antenna, a second port coupled to the directional coupler, and a third port that is coupled to a calibration resistance. The reflectometer may have terminations of identical impedance that are coupled to ground. Switching circuitry in the reflectometer may be used to route signals from the directional coupler to a feedback receiver for measurement by the control circuitry or to ground through the terminations. Calibrated antenna reflection coefficient measurements may be used in dynamically adjusting the antenna.
Abstract:
An electronic device may have wireless circuitry with antennas. The electronic device may have a dielectric housing. A printed circuit board with electrical components may be mounted in the dielectric housing. Heat spreader structures may be used to dissipate heat from the electrical components. The heat spreader structures be configured to form antenna cavities. The antennas in the electronic device may be formed from the antenna cavities and may have antenna resonating elements formed on the printed circuit. An electrical component such as a light-emitting diode may be mounted in one of the antenna cavities. Each antenna element may be an inverted-F antenna resonating element with short and long arms. The short arm of each antenna resonating element may be formed from edge plated metal traces on an edge of the printed circuit.
Abstract:
An electronic device has antennas formed from cavity antenna structures. The electronic device may have a metal housing. The metal housing may have an upper housing in which a component such as a display is mounted and a lower housing in which a component such as a keyboard is mounted. Hinges may be used to mount the upper housing to the lower housing for rotation about a rotational axis. Cavity antennas may be formed in a clutch barrel region located between the hinges and running along the rotational axis. A flexible printed circuit may be formed between the cavity antennas. Each cavity antenna may have a first end that is adjacent to one of the hinges and a second end that is adjacent to the flexible printed circuit. Cavity walls for the cavity antennas may be formed from metal housing structures such as metal portions of the lower housing.
Abstract:
An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from peripheral conductive structures running along the edges of a device housing. Elongated conductive members may longitudinally divide openings between the peripheral conductive housing structures and the ground. The elongated conductive members may extend from an internal ground to outer ends of the elongated conductive members that are located adjacent to the gaps. Transmission lines may extend along the elongated conductive members to antenna feeds at the outer ends. The elongated conductive members may form open slots that serve as slot antenna resonating elements for the antenna.
Abstract:
An electronic device has antennas formed from cavity antenna structures. The electronic device may have a metal housing. The metal housing may have an upper housing in which a component such as a display is mounted and a lower housing in which a component such as a keyboard is mounted. Hinges may be used to mount the upper housing to the lower housing for rotation about a rotational axis. Cavity antennas may be formed in a clutch barrel region located between the hinges and running along the rotational axis. A flexible printed circuit may be formed between the cavity antennas. Each cavity antenna may have a first end that is adjacent to one of the hinges and a second end that is adjacent to the flexible printed circuit. Cavity walls for the cavity antennas may be formed from metal housing structures such as metal portions of the lower housing.
Abstract:
Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may form a dual arm inverted-F antenna. The antenna may have a resonating element formed from portions of a peripheral conductive electronic device housing member and may have an antenna ground that is separated from the antenna resonating element by a gap. A short circuit path may bridge the gap. An antenna feed may be coupled across the gap in parallel with the short circuit path. Low band tuning may be provided using an adjustable inductor that bridges the gap. The antenna may have a slot-based parasitic antenna resonating element with a slot formed between portions of the peripheral conductive electronic device housing member and the antenna ground. An adjustable capacitor may bridge the slot to provide high band tuning.
Abstract:
Electronic devices may include antenna structures. The antenna structures may form an antenna having first and second feeds at different locations. Transceiver circuitry for transmitting and receiving radio-frequency antenna signals may be mounted on one end of a printed circuit board. Transmission line structures may be used to convey signals between an opposing end of the printed circuit board and the transceiver circuitry. The printed circuit board may be coupled to an antenna feed structure formed from a flexible printed circuit using solder connections. The flexible printed circuit may have a bend and may be screwed to conductive electronic device housing structures using one or more screws at one or more respective antenna feed terminals. Electrical components such as an amplifier circuit and filter circuitry may be mounted on the flexible printed circuit.
Abstract:
Electronic device antenna structures may include first and second antennas. A housing may have a periphery that is surrounded by peripheral conductive structures such as a segmented peripheral metal member. A segment of the peripheral metal member may be separated from a ground by an opening. An antenna feed for the first antenna may have a positive antenna terminal coupled to the peripheral metal member and a ground terminal coupled to the ground. A return path for the first antenna may span the opening in parallel with the antenna feed. A plastic carrier may be mounted to a printed circuit and a metal housing structure using screws. The plastic carrier may support an antenna resonating element for the second antenna and may support the return path for the first antenna. The screws may short metal structures on the plastic carrier to the metal structures and traces on the printed circuit.
Abstract:
Electronic devices may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include an inverted-F antenna resonating element and an antenna ground that form an inverted-F antenna having first and second antenna ports. The antenna structures may include a slot antenna resonating element. The slot antenna resonating element may serve as a parasitic antenna resonating element for the inverted-F antenna at frequencies in a first communications band and may serve as a slot antenna at frequencies in a second communications band. The slot antenna may be directly fed using a third antenna port. An adjustable capacitor may be coupled to the first port to tune the inverted-F antenna. The inverted-F antenna may also be tuned using an adjustable capacitor bridging the slot antenna resonating element.
Abstract:
An electronic device has wireless communications circuitry including an adjustable antenna system coupled to a radio-frequency transceiver. The adjustable antenna system may include one or more adjustable electrical components that are controlled by storage and processing circuitry in the electronic device. The adjustable electrical components may include switches and components that can be adjusted between numerous different states. The adjustable electrical components may be coupled between antenna system components such as transmission line elements, matching network elements, antenna elements and antenna feeds. By adjusting the adjustable electrical components, the storage and processing circuitry can tune the adjustable antenna system to ensure that the adjustable antenna system covers communications bands of interest.