Abstract:
Systems and methodologies are described herein that facilitate efficient transfer of quality of service (QoS) context during inter-radio access technology (RAT) handovers. In particular, techniques are described herein for establishing rules for whether a user equipment unit (UE) or an associated network should establish QoS for a mixed-mode application, identifying flow to bearer mappings when translating QoS across an inter-RAT handover, mapping QoS parameters of respective RATs, mitigating QoS depreciation upon multiple handovers, performing one or more actions if QoS is not acceptable in a new RAT, maintaining QoS during tunnel mode, and handling scenarios in which a UE moves between a RAT using network-initiated QoS and a RAT using UE-initiated QoS.
Abstract:
Enhanced techniques may be used for identifying and reporting collision-based scenarios. In one example, a wireless modem measures a number of signals received from a number of devices that are located on the same chip as the wireless modem when a physical link between the wireless modem and an accelerometer is broken, the accelerometer is inoperable, or a combination thereof. In the event of a collision event, the wireless modem may use the measured signals to determine that the collision event has occurred and may transmit an indication of the collision event. For instance, the wireless modem may use signals from an audio sensor, a motion sensor, a global navigation satellite system (GNSS), or the like.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may receive information indicating a potential handoff for another apparatus in communication with the apparatus. The apparatus may adjust, based on the information indicating the potential handoff, a communication parameter or a communication rate associated with the communication before the potential handoff occurs. The apparatus may identify a potential handoff during communication with another apparatus. The apparatus may cause, based on identifying the potential handoff, an adjustment to a communication parameter or a communication rate associated with the communication before the potential handoff occurs.
Abstract:
Systems, methods, and devices for accessing a service of a wireless carrier network through a wireless local area network (WLAN) are described. A method includes selecting one or more traffic management parameters associated with the WLAN based at least in part on one or more quality of service (QoS) parameters associated with the service of the wireless carrier network being accessed. The method further includes transmitting packets over the WLAN using the selected one or more traffic management parameters associated with the WLAN when a user equipment accesses the service of the wireless carrier network through the WLAN. The user equipment enforces the selected one or more traffic management parameters for communications to the wireless carrier network. An access point enforces the selected one or more traffic management parameters for communications to the user equipment.
Abstract:
Methods, systems, and devices for improved acquisition of wireless communication systems or networks are described. A wireless communication device may be connected to a first network that uses a first radio access technology (RAT). When a failure occurs (e.g., lost connection), the device may attempt to acquire a cell or channel of another network that uses a second RAT. The time consumed for acquiring the channel of the second RAT may be reduced by providing a suitably prioritized list of channels. In some examples, the device may identify a channel for initial access or following a call failure based on prior successful access on that channel, or based on information provided by a server, or both.
Abstract:
Methods, systems, and devices are described for wireless communication at a UE. In aspects, a receiver may receive a transmission requesting information about support for data compression. The receiver may determine parameters related to the types of supported data compression and communicate the information to the transmitting device. In some cases, the receiver may then receive a message from the transmitting entity that requests establishment of a data compression configuration. The receiver may respond with confirmation or rejection of the proposed compression configuration. If the configuration is confirmed, the transmitter and receiver may exchange compressed data packets according to the configuration. The devices may exchange status and control information related to the compression configuration (e.g., in a compression header of a compressed message or a separate status and/or control information message).
Abstract:
An access terminal pre-registers with a second access network via a first access network to ensure a quick handover in the future. Frequent pre-registration attempts are avoided by implementing a hysteresis timer that restricts when a pre-registration process can be initiated. The hysteresis timer is started when pre-registration is initiated by the access terminal. No new pre-registration attempts are permitted if the hysteresis timer has not expired. An abort condition can cause the hysteresis timer to be aborted early, and a new pre-registration can be initiated. Access points in the first access network may be grouped into one or more pre-registration zones. If the access terminal moves from a first access point to a second access point, a new pre-registration is skipped if the first and second access points have the same pre-registration zone or the second access point is aware of the pre-registration zone for the first access point.
Abstract:
Systems and methods which provide partial bandwidth support of secondary cells for Carrier Aggregation (referred to as Partial Bandwidth Carrier Aggregation) are disclosed. Partial Bandwidth Carrier Aggregation according to embodiments implements wireless links using a plurality of cells with a user equipment (UE), as a means to improve the UE throughput, by using of a portion of the secondary cell bandwidth to accommodate bandwidth limitations of the UE and thereby facilitates the aggregation of component carriers (or portions thereof) when Carrier Aggregation would not otherwise be possible.
Abstract:
Methods, systems, and devices are described for managing data connectivity at a user equipment (UE). The managing may include determining that all traffic of all PDN connections of the UE is currently offloaded to a Wireless Local Area Network (WLAN) access network and then refraining from transmitting and receiving data over Wireless Wide Area Network (WWAN) PDN connections while all traffic of all PDN connections of the UE is offloaded to the WLAN access network. In response to detecting a triggering event, a PDN connection may be established with at least one of an available WWAN access network or the WLAN access network, according to a current WWAN camping status of the UE and a WLAN offload policy.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. In a first configuration, the apparatus is an eNB. The eNB constructs an MCCH change notification, and sends the MCCH change notification with a carrier frequency index for a first frequency of a first cell on a second frequency of a second cell. In a second configuration, the apparatus is a UE. The UE receives a configuration with aggregated carriers including a primary carrier from a primary cell and one or more secondary carriers from one or more corresponding secondary cells, and receives an MCCH change notification with a carrier frequency index for a first frequency of a first cell on a second frequency of a second cell. The first cell and the second cell are each one of the primary cell and the secondary cells.