Abstract:
The present invention relates to an inkjet apparatus and an inkjet method that allows a more precise control over ink deposition. The inkjet apparatus includes: a stage having a seating zone for supporting a substrate, a jetting zone, and an exclusion zone; a nozzle head having at least one nozzle directed at the stage; an ink feeder supplying ink to the nozzle head; a driver driving at least one of the nozzle head and the stage to move the nozzle head and the stage relative to each other; and a controller controlling the ink feeder to supply ink to nozzle head when the nozzle head is placed in the jetting zone and to stop the ink supply to the nozzle head when the nozzle head is placed in the exclusion zone. Accordingly, according to the present invention, there is provided an inkjet apparatus which can reduce an ink blur and an inkjet method which can reduce an ink blur.
Abstract:
A touch panel includes a first supporting substrate, a second supporting substrate that faces the first supporting substrate, a first transparent electrode formed on the first supporting substrate, a second transparent electrode formed on the second supporting substrate, a third transparent electrode formed between the first and second transparent electrodes, a medium layer formed between the first and third transparent electrodes, and a piezoelectric layer formed between the second and third transparent electrodes.
Abstract:
Disclosed herein is a method for economically manufacturing high quality TiC powder, TiCN powder or ultrafine nanophase TiC+Ni (Co, Al) and TiCN+Ni (Co, Al) composite powders by means of metallothermic reduction. The method comprises the steps of preparing a starting solution of titanium tetrachloride (TiCl4) in a carbon chloride, feeding the starting solution into a closed container containing molten magnesium (Mg) under inert atmosphere, vacuum-separating unreacted liquid-phase Mg and magnesium chloride (MgCl2) remaining after reduction of magnesium from the closed container, and collecting a TiC compound from the closed container.TiC powder, TiCN powder or ultrafine nanophase TiC+Ni (Co, Al) and TiCN+Ni (Co, Al) composite powders having a particle size of a few tens nm can be manufactured in a simpler manner using economically advantageous starting materials such as titanium tetrachloride and carbon chlorides.
Abstract:
In an apparatus for supplying a droplet on a substrate and a method of manufacturing a display apparatus, the apparatus includes a base body, a dropping unit and a vapor supplying unit. The base body corresponds to the substrate disposed on a stage. The dropping unit is disposed on the base body. The dropping unit includes a nozzle to drop the droplet on the substrate. The vapor supplying unit is disposed adjacent to the dropping unit to supply the droplet dropped onto the substrate with a volatile solvent vapor. Therefore, an evaporation rate of the droplet dropped onto pixels is adjusted to uniformize a thickness of the layer, thereby improving the image display quality.
Abstract:
A heater assembly that is capable of uniformly heating a wafer in an apparatus for manufacturing a semiconductor device is provided. The heater assembly preferably includes a susceptor configured to support a substrate (wafer). A plurality of heaters can be disposed under the susceptor to heat the wafer. A support is preferably disposed below the heaters to support the heaters, and a power supply provides an electric current to operate the heaters. The support can include a heat-shielding portion that restricts heat conduction between the heaters. The heat-shielding portion preferably comprises heat-resistant material arranged in a groove formed on the support. The heat-shielding portion also preferably supports adjacent peripheral portions of the heaters. Electrical current provided to the heaters is preferably controlled such that the temperature of the heaters are operated in a range of about 390° C. to 420° C. Alternatively, a single or multiple ring-shaped heaters having an internal radiating space can be provided below a peripheral portion of the susceptor to uniformly heat the wafer.
Abstract:
A method for producing high density and ultrafine W/Cu bulk material by a mechano-chemical process is disclosed. In the method of this invention, metal salts as start materials are spray-dried and prepare W--Cu precursor powder having uniformly-dispersed tungsten and copper components. The W--Cu precursor powder in turn is subjected to a desalting and milling process, thus preparing W--Cu oxide composite powder. Thereafter, the W--Cu oxide composite powder may be formed into a formed green body prior to reducing and sintering under hydrogen atmosphere.
Abstract:
A heat pump configured by connecting a circuit including a variable capacity compressor, a condenser, an expansion valve, and an evaporator through a closed refrigerant line, includes a condenser fan, an evaporator fan, a refrigerant amount adjusting means for charging or recovering a refrigerant in or from the circuit, and a controller. Roles of the controller include setting a target pressure inside an outdoor heat exchanger y referring to an outside temperature and a load, setting a target pressure inside an indoor heat exchanger by referring to an inside temperature and a set temperature, setting a target sub-cooling degree and a target super-heating degree, and controlling both of the fans to either adjust temperature or adjust pressure.
Abstract:
This disclosure generally relates to an automatic bicycle, particularly to a hydraulic automatic transmission bicycle which can automatically and adaptively change gear ratios. More particularly, this disclosure relates to those hydraulic automatic transmission bicycles which use fluid pressure to change such gear ratios, and which include various hydraulic automatic transmissions which may be provided in various configurations and may operate in various methods and sequences to provide automatic and infinitely variable gear ratios.
Abstract:
Disclosed is a lighting control apparatus. According to one embodiment of the present invention, a lighting system control be easily configured, maintained, and repaired since additional light and block control of the lighting can be provided with ease by wireless control of the lighting through wireless communication. In addition, the present invention can control individual lamps by storing a control signal corresponding to an address for each lamp in a gateway according to a predetermined scenario.
Abstract:
In a method of forming an organic light emitting structure, a plurality of first electrodes spaced apart from each other is formed on a lower substrate. A first organic layer covering the first electrodes is formed on the lower substrate. A preliminary pixel defining layer is formed on the first organic layer. The preliminary pixel defining layer includes a photosensitive material, and is selectively exposed to light so that the preliminary pixel defining layer and a portion of the first organic layer beneath the preliminary pixel defining layer are transformed into a pixel defining layer and a first organic layer pattern, respectively. An emitting layer is formed on the first organic layer exposed by the pixel defining layer. A second organic layer is formed on the emitting layer. A second electrode is formed on the second organic layer.