Abstract:
A resource indication processing method is disclosed, and is applied to a wireless local area network that uses an OFDMA technology. The method includes: sending or receiving a trigger frame, where the trigger frame includes information (I1) used to indicate whether the trigger frame allows random access transmission.
Abstract:
A fine timing measurement FTM method and a communications device are disclosed. The method includes: receiving an FTM request frame from at least two communications devices; and sending a first FTM measurement frame according to the FTM request frame, where the first FTM measurement frame includes a measurement parameter of each of the at least two communications devices and identifier information used to indicate each communications device, so that each communications device obtains the measurement parameter according to the identifier information.
Abstract:
The frame transmission method in the wireless local area network includes: generating, by an access point, a physical layer protocol data unit PPDU of a target type, where the PPDU includes a target media access control MAC frame structure that is generated in a target encapsulation format and that carries a trigger frame, and whether the target MAC frame structure includes a packet extension field is determined based on the target type and the target encapsulation format; and sending, by the access point, the PPDU.
Abstract:
Embodiments of the present invention provide a physical layer protocol data unit PPDU transmission method and a corresponding PPDU transmission apparatus. Application of the method and apparatus in the embodiments of the present invention enables a receive end to quickly determine the starting position of the feature signal sequence by means of blind detection, and ensures that the receive end quickly completes data processing and status switching.
Abstract:
Disclosed is a data transmission method. The method comprises: reserving a first channel and a second channel, where the first channel is used for transmitting data and the second channel is used for transmitting ACKs; sending data to a receiving end on the first channel that is reserved; receiving an ACK that is sent by the receiving end and corresponds to the data on the second channel that is reserved and determining whether the data needs to be cached based on information carried in the ACK; and if the information carried in the ACK indicates that the receiving end has correctly received the data, clearing the data that is cached by a sending end. Through separate transmission of the data and the ACK, an efficiency problem of the sending end in providing MAC in a wireless system in a condition of a limited cache capacity is resolved.
Abstract:
A method for adjusting a timing advance includes: sending an uplink message to an access point, AP, and receiving a downlink message returned by the AP; according to the moment when the uplink message is sent, the moment when the downlink message returned by the AP is received and the fixed time when the downlink message is returned by the AP, obtaining time alignment information; and according to the time alignment information, adjusting the amount of time by which a signal is sent in advance.
Abstract:
A bandwidth adjustment method includes: determining a bandwidth update value of a channel of a first network system and a bandwidth update value of a channel of a second network system and a bandwidth update value of a protective bandwidth according to a request of a user or a channel condition, so that updated bandwidths of the channels of the first network system and the second network system meet the request of the user or are adapted to requirements of channel conditions. By using the technical schemes, a network resource can be adjusted between multiple network systems when the multiple network systems share one network resource, thereby helping improve the application efficiency of a bandwidth resource and ensuring anti-interference capabilities of the network systems.
Abstract:
Embodiments of the present invention disclose a method and an apparatus for retrieving transmission opportunity control in reverse direction grant. The method includes: obtaining, by a reverse direction responder (RD responder), a TXOP control from a reverse direction initiator (RD initiator); enabling, by the RD responder, a multi-user multiple-input multiple-output (MU-MIMO) mode; sending, by the RD responder, a frame to a plurality of stations concurrently in a TXOP period, the plurality of stations comprise the RD initiator; wherein the frame carries information that only requires the RD initiator to send back only a single acknowledgement in the TXOP period to return the TXOP control.
Abstract:
A precoding method, a precoding apparatus, a Frequency Domain Equalization (FDE) method, and an FDE apparatus are provided in the embodiments of the present invention. The precoding method includes: performing offset modulation for a transmitting signal vector; calculating a precoding matrix according to the offset-modulated transmitting signal vector and a receiver decision signal vector, where the precoding matrix is used for performing precoding for the transmitting signal vector; and performing precoding for the transmitting signal vector according to the precoding matrix. Linear precoding is performed by using the offset-modulated signal on the transmitter, and therefore, the interference caused by multiple antennas and multipath propagation is reduced, the system BER is reduced, and the complexity of implementation is low.
Abstract:
The present invention discloses a method, device, and system for transmitting channel information, pertaining to the field of radio communication. The method for obtaining channel information includes: transmitting, by a beamformer, a request for obtaining channel information to a beamformee within the duration of a current first TXOP; receiving a null feedback frame transmitted by the beamformee within the duration of the current first TXOP; within the validity period of the channel information, if the beamformer obtains a second TXOP, transmitting, within the second TXOP, a channel information indication frame to request the channel information, and receiving the channel information transmitted by the beamformee. The system includes a beamformer and a beamformee. The present invention saves the signaling resources of the beamformer and reduces the power consumption of the beamformee.