Abstract:
In one embodiment, a method includes receiving, from a first resource of a plurality of resources connected by an energy network, data indicative of a current amount of energy stored by the first resource at a current time. The method includes determining, based on the data indicative of the current amount of energy stored by the first resource at the current time, a predicted amount of energy to be stored by the first resource at a later time. The method includes determining, based on the predicted amount of energy to be stored by the first resource at the later time, that the first resource is to receive energy. The method includes, in response to determining that the first resource is to receive energy, selecting a second resource of the plurality of resources to transmit energy to the first resource. The method includes sending, to the second resource, instructions to transmit energy to the first resource.
Abstract:
An apparatus includes a motherboard, a storage module, a first socket arranged on the motherboard, a second socket also arranged on the motherboard, and an interface. A processor is arranged within the first socket and a storage module is arranged within the second socket. The interface is configured to provide intercommunication between the processor and the storage module. The storage module contains a plurality of nonvolatile memory cards.
Abstract:
In one embodiment, a method includes receiving flight path data regarding the presence of an unmanned aerial vehicle (UAV) at a location at a future time, detecting the presence of the UAV at the location at the future time, determining radio identity data of the UAV using a radio mode of identification, determining optical identity data of the UAV using an optical mode of identification, and certifying the UAV based on a comparison of the radio identity data and the optical identity data to the flight path data.
Abstract:
An apparatus includes a motherboard, a storage module, a first socket arranged on the motherboard, a second socket also arranged on the motherboard, and an interface. A processor is arranged within the first socket and a storage module is arranged within the second socket. The interface is configured to provide intercommunication between the processor and the storage module. The storage module contains a plurality of nonvolatile memory cards.
Abstract:
One or more dual-role Power-over-Ethernet (PoE) port units are each selectively configurable to operate as either (i) a PoE Power Source Equipment (PSE) port unit to provide power to a device connected to the PoE port unit, or (ii) a PoE Powered Device (PD) port unit to sink power from the connected device. Each PoE port unit includes a network port, and a bi-directional power converter to selectively convert power in either (i) a first direction and to provide converted power to the network port when the PoE port unit operates as the PSE port unit, or (ii) in a second direction to convert power received from the network port when the PoE port unit operates as the PD port unit.
Abstract:
In one embodiment, a controller instructs an unmanned aerial vehicle (UAV) docked to a landing perch to perform a pre-flight test operation of a pre-flight test routine. The controller receives sensor data associated with the pre-flight test operation from one or more force sensors of the landing perch, in response to the UAV performing the pre-flight test operation. The controller determines whether the sensor data associated with the pre-flight test operation is within an acceptable range. The controller causes the UAV to launch from the landing perch based in part on a determination that UAV has passed the pre-flight test routine.
Abstract:
One or more dual-role Power-over-Ethernet (PoE) port units are each selectively configurable to operate as either (i) a PoE Power Source Equipment (PSE) port unit to provide power to a device connected to the PoE port unit, or (ii) a PoE Powered Device (PD) port unit to sink power from the connected device. Each PoE port unit includes a network port, and a bi-directional power converter to selectively convert power in either (i) a first direction and to provide converted power to the network port when the PoE port unit operates as the PSE port unit, or (ii) in a second direction to convert power received from the network port when the PoE port unit operates as the PD port unit.
Abstract:
In one embodiment, a method comprises receiving, by an apparatus, a Media Access Control (MAC) frame destined for a destination device; dividing, by the apparatus, the MAC frame into frame fragments; coding the frame fragments into encoded cells; and causing, by the apparatus, transmission of selected subsets of the encoded cells, as distinct flows of the encoded cells, by respective optical physical layer transmitter devices reachable by the destination device.
Abstract:
A lighting control system is provided which accepts user lightning commands, generates controls in accordance with predetermined operating policies and directs light fixtures to produce brightness, color, or directional pattern of the light emitted by the light fixtures. The lighting control system determines whether the light emitted by the light fixtures complies with government regulations, and building policies, and insures that controls are adjusted such that all regulations regarding lighting safety and working conditions, as well as building policy and energy management targets are adhered to. In addition, a way to reconcile conflicting user requests for lighting settings is provided.