Abstract:
A technique is able to direct a power signal from a port power controller to one of multiple physical ports. The technique involves activating a set of port power controllers. Each port power controller is constructed and arranged to deliver power to a device through at most one physical port at a time. The technique further involves performing a set of discovery operations to discover device presence, the set of discovery operations providing discovery data. The technique further involves providing, based on the discovery data provided by the set of discovery operations, a set of switching signals to switching circuitry which is coupled to a set of physical ports. The switching circuitry is constructed and arranged to steer power signals from the activated set of port power controllers through the set of physical ports to deliver power to a set of devices.
Abstract:
A network device includes Power-over-Ethernet PoE ports to communicate with a communication network and Universal Serial Bus (USB) devices. The network device establishes an Internet Protocol (IP) related connection with an application program, and receives downlink IP packets carrying USB transaction requests destined for the USB device from the application program over the IP connection. The network device converts the received downlink IP packets carrying the USB transaction requests to downlink bus-level USB transactions that are understandable to the USB device. The network device sends the downlink bus-level USB transactions to the USB adaptor device over a PoE connection for forwarding by the USB adaptor device to the USB device.
Abstract:
Presented herein are techniques for storing parameter values determined by a power sourcing equipment (PSE) device during a Power over Ethernet (PoE) detection process. More specifically, in one example, a voltage is applied to an end device connected, via an Ethernet cable, to a port of the PSE device. The PSE device measures the current drawn by the end device and calculates, based on the measured current, a resistance and/or a capacitance value for the end device. The resistance and/or capacitance values are then stored in a memory of the PSE device.
Abstract:
A powered device (PD) receives a Power-over-Ethernet (PoE) voltage to power the PD over a cable from Power Source Equipment (PSE) configured to output a requested one of multiple candidate PoE voltages to the cable. The PD determines a preferred PoE voltage among the multiple candidate PoE voltages that minimizes a total power loss due to (i) the cable, and (ii) a power loss of the PD that would result if the PD were powered through the cable. The PD requests the preferred PoE voltage from the PSE, receives the preferred PoE voltage from the PSE, and operates at the preferred PoE voltage.
Abstract:
A technique is able to direct a power signal from a port power controller to one of multiple physical ports. The technique involves activating a set of port power controllers. Each port power controller is constructed and arranged to deliver power to a device through at most one physical port at a time. The technique further involves performing a set of discovery operations to discover device presence, the set of discovery operations providing discovery data. The technique further involves providing, based on the discovery data provided by the set of discovery operations, a set of switching signals to switching circuitry which is coupled to a set of physical ports. The switching circuitry is constructed and arranged to steer power signals from the activated set of port power controllers through the set of physical ports to deliver power to a set of devices.
Abstract:
A technique is able to direct a power signal from a port power controller to one of multiple physical ports. The technique involves activating a set of port power controllers. Each port power controller is constructed and arranged to deliver power to a device through at most one physical port at a time. The technique further involves performing a set of discovery operations to discover device presence, the set of discovery operations providing discovery data. The technique further involves providing, based on the discovery data provided by the set of discovery operations, a set of switching signals to switching circuitry which is coupled to a set of physical ports. The switching circuitry is constructed and arranged to steer power signals from the activated set of port power controllers through the set of physical ports to deliver power to a set of devices.
Abstract:
A Network-Universal Serial Bus (NUSB) adaptor exchanges Power-over-Ethernet (PoE) packets with, and receives power from, a Power Source Equipment (PSE) over a PoE connection with the PSE, and exchanges Universal Serial Bus (USB) messages with, and provides power to, a USB device over a USB connection with the USB device. The NUSB adaptor converts between a USB power negotiation protocol implemented between the USB device and the NUSB adaptor and a PoE power negotiation protocol implemented between the NUSB adapter and the network device.
Abstract:
An interface device receives at least one access command with at least one corresponding slave address on a bus. The interface device reads a configuration register, and responsive to the reading of the configuration register, the interface device selects one of a plurality of interface architecture configurations. The interface architecture configurations allow the interface device to operate as either a single physical interface entity or as multiple virtual interface entities. The interface device processes the access command according to the selected interface architecture configuration.
Abstract:
A Network-Universal Serial Bus (NUSB) adaptor exchanges Power-over-Ethernet (PoE) packets with, and receives power from, a Power Source Equipment (PSE) over a PoE connection with the PSE, and exchanges Universal Serial Bus (USB) messages with, and provides power to, a USB device over a USB connection with the USB device. The NUSB adaptor converts between a USB power negotiation protocol implemented between the USB device and the NUSB adaptor and a PoE power negotiation protocol implemented between the NUSB adapter and the network device.
Abstract:
Presented herein are techniques for storing parameter values determined by a power sourcing equipment (PSE) device during a Power over Ethernet (PoE) detection process. More specifically, in one example, a voltage is applied to an end device connected, via an Ethernet cable, to a port of the PSE device. The PSE device measures the current drawn by the end device and calculates, based on the measured current, a resistance and/or a capacitance value for the end device. The resistance and/or capacitance values are then stored in a memory of the PSE device.