Abstract:
A lighting control system is provided which accepts user lightning commands, generates controls in accordance with predetermined operating policies and directs light fixtures to produce brightness, color, or directional pattern of the light emitted by the light fixtures. The lighting control system determines whether the light emitted by the light fixtures complies with government regulations, and building policies, and insures that controls are adjusted such that all regulations regarding lighting safety and working conditions, as well as building policy and energy management targets are adhered to. In addition, a way to reconcile conflicting user requests for lighting settings is provided.
Abstract:
Techniques presented herein are directed to synchronizing the execution time of lighting operations within a networked lighting system. In one example, a network device that is connected to at least one networked light fixture accepts one or more timing reference messages representing a network time base. The network device generates one or more lighting control messages that identify at least one light control setting for the networked light fixture connected to the network device. Based on the one or more timing reference messages, the network device encodes a time for execution of the light control setting within the lighting control messages, thereby generating one or more time encoded lighting control messages. The network device sends the time encoded lighting control messages to the networked light fixture for execution of the light control settings at the time of execution specified in the time encoded lighting control message.
Abstract:
Intelligent powered device (PD) control system including a switch system, state detector (SD), intelligent control device (ICD), and a PD. The switch system includes one or more conventional electrical switches. Each switch includes an interface to receive selection of a switch system state change between conductive and non-conductive states. The switch system includes a conductor pair(s) indicative of switch system state based on the selection. The SD signals the detected state to the ICD. The switch system output is in electrical connection with the detector such that, in the conductive state a loopback is formed in the switch system and SD, and in the non-conductive state no loopback is formed. The ICD receive the message from the state detector and transmits a fixture control command based on the message. The PD receives the command from the ICD via the data communications network, and controls its state based on the command.
Abstract:
Techniques presented herein are directed to the coordinated network-based control of the color capabilities of multi-color fixtures. A network device is connected to multi-color light fixtures each comprising a local processor and a plurality of color light emitters. The network device receives data inputs from one or more data sources and uses the data inputs to identify a color informational display for presentation across a plurality of the multi-color light fixtures. The network device generates messages encoding light control settings for each of the plurality of multi-color light fixtures enabling each multi-color light fixture to present a spatial or temporal segment of the color informational display and sends the messages to the plurality of light fixtures. Execution of instructions embedded in the messages by the local processors results in the creation of the color informational display across the plurality of multi-color light fixtures.
Abstract:
Techniques presented herein are directed to synchronizing the execution time of lighting operations within a networked lighting system. In one example, a network device that is connected to at least one networked light fixture accepts one or more timing reference messages representing a network time base. The network device generates one or more lighting control messages that identify at least one light control setting for the networked light fixture connected to the network device. Based on the one or more timing reference messages, the network device encodes a time for execution of the light control setting within the lighting control messages, thereby generating one or more time encoded lighting control messages. The network device sends the time encoded lighting control messages to the networked light fixture for execution of the light control settings at the time of execution specified in the time encoded lighting control message.
Abstract:
Techniques are presented herein to enable identification of light fixtures. A light fixture modulates light emitted by the light fixture with an identifier associated with the light fixture. The identifier may be encoded or encrypted before it is modulated. In one example, the identifier is a Universally Unique Identifier (UUID). A user device is positioned to detect light emitted by the light fixture. The user device demodulates the light to obtain the identifier. The identifier, time and location associated with detection of the identifier are sent to a management entity for use in provisioning the light fixture on a network.
Abstract:
Intelligent powered device (PD) control system including a switch system, state detector (SD), intelligent control device (ICD), and a PD. The switch system includes one or more conventional electrical switches. Each switch includes an interface to receive selection of a switch system state change between conductive and non-conductive states. The switch system includes a conductor pair(s) indicative of switch system state based on the selection. The SD signals the detected state to the ICD. The switch system output is in electrical connection with the detector such that, in the conductive state a loopback is formed in the switch system and SD, and in the non-conductive state no loopback is formed. The ICD receive the message from the state detector and transmits a fixture control command based on the message. The PD receives the command from the ICD via the data communications network, and controls its state based on the command.
Abstract:
Techniques are presented herein to enable identification of light fixtures. A light fixture modulates light emitted by the light fixture with an identifier associated with the light fixture. The identifier may be encoded or encrypted before it is modulated. In one example, the identifier is a Universally Unique Identifier (UUID). A user device is positioned to detect light emitted by the light fixture. The user device demodulates the light to obtain the identifier. The identifier, time and location associated with detection of the identifier are sent to a management entity for use in provisioning the light fixture on a network.
Abstract:
A lighting control system is provided which accepts user lightning commands, generates controls in accordance with predetermined operating policies and directs light fixtures to produce brightness, color, or directional pattern of the light emitted by the light fixtures. The lighting control system determines whether the light emitted by the light fixtures complies with government regulations, and building policies, and insures that controls are adjusted such that all regulations regarding lighting safety and working conditions, as well as building policy and energy management targets are adhered to. In addition, a way to reconcile conflicting user requests for lighting settings is provided.
Abstract:
Techniques presented herein are directed to the coordinated network-based control of the color capabilities of multi-color fixtures. A network device is connected to multi-color light fixtures each comprising a local processor and a plurality of color light emitters. The network device receives data inputs from one or more data sources and uses the data inputs to identify a color informational display for presentation across a plurality of the multi-color light fixtures. The network device generates messages encoding light control settings for each of the plurality of multi-color light fixtures enabling each multi-color light fixture to present a spatial or temporal segment of the color informational display and sends the messages to the plurality of light fixtures. Execution of instructions embedded in the messages by the local processors results in the creation of the color informational display across the plurality of multi-color light fixtures