Abstract:
A method of identifying at least one event zone subject to an event in a substation environment of an electrical grid. Thereby, data from multiple intelligent electronic devices can be synthesized in real-time whereby an operator can be presented with a single conclusion describing the event attributes thereby helping the operator to determine the mitigation actions as needed. The method includes receiving first event related data from the intelligent electronic devices, and based on the first event related data, determining whether the at least one monitoring zone subject to the event is a primary monitoring zone of at least one of the intelligent electronic devices or a non-primary monitoring zone for all of the intelligent electronic devices using ensemble decision making and probabilistic methods. It is also presented a system for carrying out the method.
Abstract:
An industrial process control system including a process control device, a first wireless communication network, a second wireless communication network and a first group of wireless field devices interfacing the industrial process and being associated with the first network. The network supervisor device investigates if the field devices of the first group are able to communicate with the process control device via the first network while meeting a communication restriction requirement, and redirects, in case the requirement is not met, communication between some of the field devices in the first group and the process control device to the second network so that the requirement is met for a first part of the field devices using the first wireless communication network and for a second part of the field devices using the second wireless communication network.
Abstract:
A method for communication between a wireless device node in a wireless sensor network (WSN) and control apparatus or control processes of an industrial control system is used to determine a method of radio transmission which provides a greater or a lesser measure of transmission quality between nodes. Thus a transmitter node measures a transmission quality metric of at least one packet received from two or more different switching branches, identifies which of the two or more switching branches has the greater transmission quality metric, distributes data packets with a first priority to the switching branch with the greater transmission quality metric, and transmits data packets with the first priority such as real-time data on the switching branch with the greater transmission quality metric. A wireless node, a sensor network system and a computer program for carrying out the method are described.
Abstract:
An electric machine including a closed chamber with a wall and enclosing a stator, a rotor and a first fluid and a heat exchanging unit stretching from the chamber through the wall to a fluid transporting passage. The heat exchanging unit includes conduits provided in a loop, containing a working fluid and equipped with evaporator channels and condenser channels, first heat transfer elements inside the chamber for transferring heat from the first fluid to the working fluid via the evaporator channels and second heat transfer elements in the passage for transferring heat out of the working fluid via the condenser channels to a second fluid, a first fluid propagating unit inside the chamber forcing the first fluid to circulate and a second fluid propagating unit in the passage forcing the second fluid to flow past the second heat transfer element.
Abstract:
Exemplary embodiments are directed to a communication network interconnecting a plurality of synchronized nodes, where regular frames including time-critical data are transmitted periodically or cyclically, and sporadic frames are transmitted non-periodically or occasionally. For example, each node can transmit a regular frame at the beginning of a transmission period common to, and synchronized among, all nodes. Another node then receives regular frames from its first neighboring node, and forwards the frames within the same transmission period and with the shortest delay, to a second neighboring node. Furthermore, each node actively delays transmission of any sporadic frame, whether originating from an application hosted by the node itself or whether received from a neighboring node, until forwarding of all received regular frames is completed.
Abstract:
A system and method are provided for monitoring in real time the operating state of an IGBT device, to determine a junction temperature and/or the remaining lifetime of an IGBT device. The system includes a differential unit configured to receive a gate-emitter voltage characteristic of the IGBT device to be measured and to differentiate the gate-emitter voltage characteristic to obtain pulses correlating with edges formed by a Miller plateau phase during a switch-off phase of the IGBT device. The system also includes a timer unit configured to measure the time delay between the obtained pulses indicating the start and end of the Miller plateau phase during the switch-off phase of the IGBT device, and a junction temperature calculation unit configured to determine at least one of the junction temperature of the IGBT device and/or the remaining lifetime of the IGBT device based on the measured time delay.
Abstract:
An exemplary Multi-Terminal High Voltage Direct Current (MTDC) system includes at least three terminals, where each terminal including a Voltage Source Converter (VSC) controlled by a VSC controller. A method for controlling the MTDC system includes providing a converter schedule including at least one of a desired power flow value and a DC voltage; determining, by a MTDC master controller, a present state of the MTDC system including a dynamic topology of the MTDC system; determining, by the MTDC master controller, based on the present state of the MTDC system, based on the schedule and based on MTDC system constraints, VSC controller parameters including droop settings for local control by the VSC controllers; and transmitting the VSC controller parameters to the VSC controllers.
Abstract:
A method of controlling a ship as well as to a ship, where the ship includes at least one data collecting unit configured to collect operational data of the ship, at least one control computer for controlling an operation aspect of the ship, at least one window facing a view used in the control, and at least one actuating unit for actuating a control aspect of the ship. The at least one window includes a touch screen on which operational data obtained from the data collecting unit is presented and via which a control command can be entered for controlling the ship.
Abstract:
A power electronics module for enhancing short circuit failure mode (SCFM) transitions. The module is adapted to disconnect a gate unit from the module using a first switch, upon a failure of at least one of a plurality of semiconductor chips during which the failed chip enters an SCFM, and connect a passive circuit arrangement, including at least one capacitor and at least one resistor, to the module using a second switch. The passive circuit arrangement is adapted to switch on at least one of the remaining non-failed semiconductor chips.
Abstract:
Rotating machines and magnetic thrust bearings therefor are disclosed. Magnetic thrust bearings may include a rotor core configured to extend coaxially around a shaft of a rotating machine, a non-magnetic element configured to be coaxially disposed on the shaft, and a stator comprising a stator core and a coil, both of which are configured to extend coaxially around the axis. The rotor core may include a substantially radially extending thrust face and a substantially axially extending peripheral surface. The non-magnetic element may radially space the thrust face from the shaft. The stator core may include a substantially radially extending first pole surface and a substantially axially extending second pole surface. The first pole surface may define an axial air gap with the thrust face, and the second pole surface may define a radial air gap with the peripheral surface.