Abstract:
A system and method for the remote configuration and control of a access devices via a broadband access gateway is disclosed. The broadband access gateway may comprise a wireless interface and a broadband network connection for exchanging information via, for example, a digital subscriber loop, a cable connection, a T1 connection, and T3 network connection. A user using any of a plurality of access devices may communicate with the broadband access gateway via the wireless interface or the broadband network connection to make remote requests of another of the access devices. Such requests may comprise, for example, accessing, recording, playing, exchanging, transmitting, receiving, converting, translating of multimedia information. The remote requests may include enabling, disabling, configuring, monitoring, administering, and scheduling of smart appliances and premise systems such as, for example, security, heating, and cooling systems.
Abstract:
A method and apparatus for transmitting class 1, 2, or 3 fax image data streams over Internet Global Area Networks is shown. A first device converts local fax image data streams into electronic data streams, transmits the data stream over the network, to a second device at the remote fax machine which reconverts the electronic data to fax image data and prints it out on said remote fax machine.
Abstract:
Embodiments of the invention provide a home communications device. The home communications device is connected to an external network comprising external devices. The home communications device comprises a plurality of interfaces for connecting a plurality of internal devices to form one or more internal networks. The home communications device further comprises a communication manager configured to enable communication among one or more of the internal devices and the external devices, wherein one or more of the internal devices operate on separate or similar communication protocols.
Abstract:
A gateway apparatus that interconnects a mobile circuit switched network and a mobile IMS network to implement the video phone includes a conversion unit. The conversion unit demultiplexes a multiplexed bit stream signal output from a mobile terminal connected to the mobile circuit switched network to take out one or more of a control signal, a compression-encoded speech signal, and a compression-encoded video signal. The conversion unit converts the control signal into one or more of a MEGACO signal, a SIP signal and a SDP signal, while converting the speech signal and the video signal, if necessary. The conversion unit also packetizes the speech signal and the video signal to transmit resulting packets to the IMS network.
Abstract:
A method and apparatus for enabling remote access to a local gateway (302) of a local network from a remote device (300) located outside the local network. Capabilities and credentials of the remote device and of the local gateway are configured independently in an IMS core (304) for the remote access. One or more users are also authorised for remote access to the local network by adding an IMS identity of each authorised user to an IMS based ACL (Access Control List). An access request to the local gateway from the remote device will be accepted if the IMS identity of the remote device user is present in the IMS based ACL. A remote access connection can then be established by means of the configured capabilities and credentials of the remote device and the local gateway.
Abstract:
In order to provide a single common cost-efficient architecture for real time communication services for audio, video, and data over internet protocol, a voice over internet protocol (VoIP) system and architecture is provided by placing border elements (BEs) at the interface boundaries between the access network the user devices use and the VoIP infrastructure. The BEs use SIP protocol as the access call control protocol over any access networking technologies, for example, IP, Ethernet, ATM, and FR, and provides all services transparently to the end users that use SIP-enabled devices.To enable a scalable system, the SIP BEs are decomposed into separate communicating entities that make the SIP BE scalable and provide new capabilities not previously available by a self-contained SIP BE. Further, multiple levels of decomposition of a SIP BE can be provided by the present invention supporting a flexible and scalable SIP BE design that further improves system efficiencies and cost advantages as compared to use of single integrated border or edge elements. Further, a scalable SIP BE, made up of a plurality of physical entities for optimization of a large scale design, acts as a single integrated functional entity to logically execute a set of functions at the border of a VoIP infrastructure.
Abstract:
A communication system for providing network access over a shared communication link is disclosed. The communication system includes a user access point, a network access point and a communications link. The user access point is coupled to one or more user terminals that access a remote network. The network access point is coupled to the remote network. The communications link couples the user access point and the network access point. The communications link is at last partially controlled by the network access point, which monitors information passed between the remote network and the user access point to create an estimate of future usage of the communications link by the user access point based on the information. The network access point allocates communications link resources for the user access point based on the estimate.
Abstract:
A system for IP telephony that utilizes distributed gateways instead of centralized gateways for communication between IP Telephones on a Packet Based Digital Network (PBDN) and Telephones on a Public Switched Telephone Network (PSTN). The system is based on the use of IP Telephone apparatuses (“Gateway Telephones”) wherein each is connected both to the PBDN and a PSTN and includes a built-in gateway between the two network connections. The gateway capacity of the system thus increases automatically with the number of Gateway Telephones. Gateway Location Servers facilitate the selection of a Gateway Telephone to serve as a gateway for a specific telephone call.
Abstract:
Systems and methods for redundancy in a network device are disclosed. An exemplary network device comprises: a plurality of data forwarding elements (DFEs); and a redundant control plane. The redundant control plane comprises: an active control processor for configuring forwarding operation of each of the DFEs; an active layer-2 switch coupled to the active control processor and to each of the DFEs; a standby control processor; and a standby layer-2 switch coupled to the standby control processor and to each of the DFEs. The active control processor is programmed in a full-mesh so that the active control processor is in communication with each of the DFEs. The standby control processor is programmed in a full-mesh so that the standby control processor is in communication with each of the DFEs.
Abstract:
A signal processing system which discriminates between voice signals and data signals modulated by a voiceband carrier. The signal processing system includes a voice exchange, a data exchange and a call discriminator. The voice exchange is capable of exchanging voice signals between a switched circuit network and a packet based network. The signal processing system also includes a data exchange capable of exchanging data signals modulated by a voiceband carrier on the switched circuit network with unmodulated data signal packets on the packet based network. The data exchange is performed by demodulating data signals from the switched circuit network for transmission on the packet based network, and modulating data signal packets from the packet based network for transmission on the switched circuit network. The call discriminator is used to selectively enable the voice exchange and data exchange.