Abstract:
The disclosure generally relates to a method and apparatus for compact dispersive imaging spectrometer. More specifically, one embodiment of the disclosure relates to a portable system for obtaining a spatially accurate wavelength-resolved image of a sample having a first and a second spatial dimension. The portable system can include a photon emission source for sequentially illuminating a plurality of portions of said sample with a plurality of photons to produce photons scattered by the sample. The photon emission source can illuminate the sample along the first spatial dimension for each of plural predetermined positions of the second spatial dimension. The system may also include an optical lens for collecting the scattered photons to produce therefrom filtered photons, a dispersive spectrometer for determining a wavelength of ones of the filtered photons, a photon detector for receiving the filtered photons and obtaining therefrom plural spectra of said sample, and a processor for producing a two dimensional image of said sample from the plural spectra.
Abstract:
The disclosure generally relates to a method and apparatus for multi-wavelength imaging spectrometer. More specifically, in one embodiment, the disclosure relates to an optical filter for passing photons therethrough. The filter includes a first filter stage and a second filter stage. The first filter stage may include a first retarder element and a first liquid crystal cell. The first element may include an input face and an output face. One of the first element faces is not oriented substantially normal to the trajectory of photons passing through the filter.
Abstract:
The present invention is to provide a cellular phone capable of measuring temperature including a liquid crystal display, a CPU and an IR temperature measurement means coupled to the CPU, wherein a first GPO pin and a second GPO pin of the CPU are adapted to control power supply of a power supply IC and start or stop of the IR temperature measurement means respectively, and in response to receiving a temperature measurement signal, the CPU performs a plurality of processing and conversion steps to show a corresponding temperature on the display.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics are apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Preferably, a two stage spectral separation is utilized, preferably utilizing a diffraction grating and interference filters.
Abstract:
A spectrometer system comprises (i) a slab waveguide characterized as an index of refraction higher than a surrounding medium, and having front surface and a rear surface opposite thereto, the front surface including a input portion for accepting optical radiation, a diffractor portion and an exit portion, (ii) a diffraction grating disposed on said diffractor portion of said front surface, (iii) a detector array aligned adjacent to the exit portion, and (iv) a mirror coated on the rear surface of the waveguide. Radiation transmitted within the waveguide from the input portion is reflected and collimated by the mirror to the granting. Light diffracted from the grating is dispersed to the mirror and reflected toward and through the exit portion and onto the array.
Abstract:
Optical characteristic measuring systems and methods for determining the color or other optical characteristics of teeth comprising a probe body (2) wherein the probe provides light to the surface of the object/tooth (20). Perimeter receiver fiber optics (102) are spaced apart from a source fiber optic and receive light from the surface of the object/tooth (20) being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics (102) to determine information regarding the height and angle of the probe with respect to the object/tooth being measured wherein the numerical apertures of the receiver fiber optics (102) are different.
Abstract:
A portable spectrophotometer is disclosed which is provided with a holding case accommodating opto-mechanical color-reading devices and an electronic control device provided with a microprocessor having data and program memories. The spectrophotometer further includes a power source which enables its self-sustained field use.