Abstract:
A secondary battery protection circuit for protecting a secondary battery including: a power supply terminal; a protection operation circuit configured to monitor a state of the secondary battery through the power supply terminal to generate a signal for turning on/off conduction of a current path between the secondary battery and a load according to a protection state determined by the monitored state of the secondary battery; a nonvolatile memory in which data is written by a writing voltage being provided at the power supply terminal, an operation of the secondary battery protection circuit being controlled by the data; a voltage generation circuit configured to generate a provision voltage which is provided to a low withstand voltage circuit; and a control circuit configured to enable the nonvolatile memory to store the data therein in accordance with the protection state upon an input voltage being greater than a determination threshold voltage.
Abstract:
A battery protection IC has detection circuits to detect faults of an overcharge, an over-discharge, and an overcurrent of a secondary battery; a control circuit to protect the secondary battery, by controlling (dis)charging the secondary battery upon the fault; and a delay circuit to generate delay after the fault before the controlling. The IC includes a memory unit to store data for setting and adjusting a circuit characteristic of the IC; and a setting circuit to set and adjust the circuit characteristic, based on the data from the memory unit. The memory unit includes a pair of non-volatile memory cells to complementarily store one bit, and a latch circuit directly cross-coupled with the memory cells, for each bit of the data. The latch circuit statically outputs the data from the memory cells to the setting circuit when the IC is turned on.
Abstract:
In a charge and discharge control circuit, a mode control part manages a normal mode in which voltages at a power terminal and an overcurrent detection terminal are monitored, a time-shortening mode in which predetermined delay times for detecting an overcharge, an overdischarge, and an overcurrent are shortened, and a protection mode in which a signal to stop a charge current or a discharge current is output when an abnormality is detected in the normal mode. A transition is made from the normal mode to the time-shortening mode when the voltage at the power terminal exceeds a predetermined value, and a transition is made from the time-shortening mode to the protection mode when one of the overcharge, overdischarge, and overcurrent is detected.
Abstract:
Provided is a chemically-thermally stable phosphor having different emission characteristics from the conventional and exhibiting high emission intensity with an LED of 470 nm or less. A phosphor of the present invention includes an inorganic crystal of a crystal represented by Sr1Si3Al2O4N4, another inorganic crystal represented by A1(D,E)5X8 and having the same crystal structure as Sr1Si3Al2O4N4, and/or a solid-solution crystal thereof, all with M (one or more kinds of elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, and Yb) being solid-solved, wherein A is one or more kinds selected from Mg, Ca, Sr and Ba; D is one or more kinds selected from Si, Ge, Sn, Ti, Zr and Hf; E is one or more kinds selected from B, Al, Ga, In, Sc, Y and La; and X is one or more kinds selected from O, N and F.
Abstract translation:提供了一种化学热稳定的荧光体,其具有与常规的发射特性不同并且具有470nm或更小的LED的高发射强度。 本发明的荧光体包括由Sr 1 Si 3 Al 2 O 4 N 4表示的结晶的无机结晶,Al(D,E)5X8表示的另一种无机结晶,与Sr 1 Si 3 Al 2 O 4 N 4具有相同的晶体结构,和/或其固溶体晶体,全部具有 M(选自Mn,Ce,Pr,Nd,Sm,Eu,Tb,Dy和Yb中的一种或多种元素)是固溶的,其中A是选自Mg,Ca,Sr和Ba中的一种或多种 ; D是选自Si,Ge,Sn,Ti,Zr和Hf中的一种或多种; E是选自B,Al,Ga,In,Sc,Y和La中的一种或多种; X是选自O,N和F的一种或多种。
Abstract:
In fabrication of a light guiding unit, a half mirror layer as a reflection film for folding light is covered by a light transmission main body part as a coating member, i.e., a light transmission member, and a hard coating layer is deposited thereon. Therefore, even when the surfaces of a light guide main body part and the light transmission main body part forming the light guiding unit are cleansed as pre-processing of the deposition of the hard coating layer, the situations such that the half mirror layer is separated thereby may be avoided and optical properties of the half mirror layer may not be lost.
Abstract:
The image light entering the image take-out section is reflected by the first reflecting surface and the second reflecting surface in a two-stage manner. It is not only possible to make the light beam with a small total reflection angle out of the image light directly enter the side near to the light entrance section out of each of the reflecting units, but also to make the light beam with a large total reflection angle directly enter the side far from the light entrance section out of each of the reflecting units to thereby make it possible to take out the image light to the outside. Therefore, the image light is emitted as the effective virtual image light for the observer in the condition in which the brightness variation and the picture variation are prevented and a high light efficiency can be obtained.
Abstract:
An image forming optical element is provided, in which an incident unit having a first lens face to which a light beam output from an original document (object) is input, an output unit having a second lens face outputting the light beam, and a bent unit connecting the incident unit and the output unit at an angle are integrally formed into a transparent medium. The bent unit has a reflection face reflecting the incident light beam input to the first lens face and guiding the light beam to the second lens face. The incident light beam is collected at any of the incident unit, the bent unit, and the output unit to form an intermediate image of the object, and the intermediate image is formed on the output side of the second lens face to form an erection image of the object.
Abstract:
First part executing means (72) of a game system (1) changes a game difficulty level in a first part, where a player plays, by changing a first game parameter in the case where another player has performed a supportive operation or an obstructive operation. Second part executing means (74) changes a game difficulty level in a second part, where the other player plays, by changing a second game parameter based on the result of play that is played by the other player in the first part with the first game parameter changed.
Abstract:
An image reading device includes a light source; a light guiding member; an imaging optical system that reflects the light, which faces a first direction from the object, in a second direction intersecting the first direction by a reflective plane disposed in the first direction of the object, that makes the light, which is reflected by the reflective plane, converge toward the second direction by an emission portion disposed in the second direction of the reflective plane, and that images an erect equal-magnification image of the object in the second direction of the emission portion; and an optical sensor that is disposed in the second direction of the emission portion of the imaging optical system, and detects the erect equal-magnification image that is imaged by the imaging optical system, in which the light guiding member is disposed at an object side of the emission portion in the first direction.
Abstract:
A projector includes: a light emitting device; a light modulation device adapted to modulate a light beam emitted from the light emitting device; and a projection device adapted to project the image formed by the light modulation device, wherein the light emitting device includes a light emitting element formed of a super luminescent diode, and adapted to emit light, and a base supporting the light emitting element with first and second reflecting surfaces to reflect the light emitted from the light emitting element. The light emitting element emits the light from first and second end surfaces. Directions of first and second outgoing light respectively emitted from the first and second end surfaces are opposite to each other. Directions of the first and second reflected light respectively reflected by the first and second reflecting surfaces are the same as each other.