Abstract:
Network devices can be configured to implement adaptive power control functionality in a communication network. A power control requestor of a local communication network can calculate a link margin between a neighbor network device of a neighbor communication network and a local network device associated with a least preferred performance measurement. The power control requestor can transmit a power control message including the link margin to request the neighbor network device to vary the transmit power of the neighbor network device. In response to receiving a power control message, a power control responder can use a link margin indicated in the power control message to evaluate the feasibility of reducing the transmit power of the power control responder. The power control responder can transmit a power control response indicating whether it will vary the transmit power.
Abstract:
Systems and methods for allocating network bandwidth between a plurality of networks. Requests for bandwidth allocation from other networks can be received. A coexistence frame requesting an allocation of bandwidth for a local network can be generated based upon the bandwidth allocation requests received from other networks. The coexistence frame can be transmitted, and utilization of the requested allocation can be delayed by a reservation period.
Abstract:
A powerline communication adapter may couple powerline communication signals between a network device and a powerline communication network. The powerline communication adapter may comprise of a first electrical connector including an electrical socket and a second electrical connector including an electrical plug. The powerline communication adapter may include a coupling unit coupled between the first electrical connector and the second electrical connector. The coupling unit may be configured to couple a powerline communication signal received via the first electrical connector to the second electrical connector to transmit the powerline communication signal via at least two powerline communication channels in the powerline communication network.
Abstract:
Channel reuse permits more than one station to communicate concurrently via a communication medium. A first station may transmit a first transmission to a second station. A third station may detect the first transmission and determine a channel a channel reuse time period for a second transmission transmitted from the third station to a fourth station via the communication medium at least partially concurrently with the first transmission. The channel reuse time period may be based at least in part on estimated time to a next priority resolution slot (PRS) of the communication medium as determined from information in a start of frame (SOF) delimiter of the first transmission. The channel reuse time period may take into account a media access control (MAC) protocol data unit (MPDU) burst, and/or time periods associated with acknowledgement messages.
Abstract:
A method comprises receiving a first message over a first portion of a frequency bandwidth. The first message includes an identifier of a transmitting first wireless device and an intended recipient second wireless device. The method comprises determining whether a second portion of the frequency bandwidth is idle for a duration of time including at least one of a PIFS time and a time required for a backoff timer to expire. The method comprises transmitting a second message over the second portion of the frequency bandwidth by a third wireless device, the second message having a limited transmission time that is not to extend beyond a transmission time of the first message, thereby allowing an availability of the first and second portions for use after an end of the transmission time of the first message. The third wireless device is not an intended recipient of the first message.
Abstract:
Channel reuse may be used so that multiple networks may communicate via a shared powerline communication (PLC) medium. In a PLC network that supports different transmission modes, channel reuse may be improved by determining signal performance metrics associated with the different transmission modes. A transmission mode may be selected to facilitate channel reuse of the PLC medium by the local network and neighbor network. A first device and a second device may belong to a local network that shares the PLC medium with a neighbor network. The transmission mode may be selected based on interference and signal measurements at one or more receivers of the second device. The transmission mode may be selected from a group comprising a 2-stream multi-input multi-output (MIMO) eigen-beamforming transmission mode, a 1-stream MIMO spot-beamforming transmission mode, and a 1-stream single-input-single-output (SISO) transmission mode.
Abstract:
A client network device may associate with a service provider to receive a service. For example, a client network device may transmit a number of broadcast messages to one or more service providers. The number of broadcast messages may be determined based, at least in part, on a first communication parameter received from at least one of the service providers. The client network device may receive first attenuation information from a first service provider after transmitting the number of broadcast messages. The client network device may associate with the first service provider based, at least in part, on the first attenuation information. In one example, a vehicle can associate with a charging station in a charging facility to securely communicate with and receive electric power from the charging station.
Abstract:
A first powerline communication device, associated with a first powerline communication network, determines a plurality of time intervals in a beacon period of the first powerline communication network based, at least in part, on variations in levels of interference from a second powerline communication network which shares a powerline communication medium with the first powerline communication network. The first powerline communication device determines at least one channel adaptation parameter for each of the plurality of time intervals in the beacon period to compensate for effects of the variations in the levels of interference from the second powerline communication network. The first powerline communication device applies the at least one channel adaptation parameter corresponding to one or more of the plurality of time intervals in the beacon period when transmitting data via the powerline communication medium.
Abstract:
A network device can be configured to dynamically adapt its current primary receiver coupling to channel conditions. For each of a plurality of transmitting network devices, the network device can determine a potential primary receiver coupling of the first network device for receiving communications from the transmitting network device based, at least in part, on a performance measurement associated with each of the plurality of communication channels between the network device and the transmitting device. The network device can select its current primary receiver coupling based, at least in part, on the potential primary receiver couplings determined for the plurality of transmitting network devices. In addition, the network device can also determine how to communicate with a receiving network device based, at least in part, on a preferred communication channel between the two network devices and a current primary receiver coupling of the receiving network device.
Abstract:
A waveform communicated from a first station to a second station over a shared medium may include at least the first symbol comprising a first set of frequency components at predetermined carrier frequencies modulated with preamble information and a second set of frequency components at predetermined carrier frequencies modulated with frame control information. The first symbol may comprise a single symbol delimiter.