Abstract:
A video processing method includes receiving an omnidirectional content corresponding to a sphere, generating a projection-based frame according to at least the omnidirectional content and a segmented sphere projection (SSP) format, and encoding, by a video encoder, the projection-based frame to generate a part of a bitstream. The projection-based frame has a 360-degree content represented by a first circular projection face, a second circular projection face, and at least one rectangular projection face packed in an SSP layout. A north polar region of the sphere is mapped onto the first circular projection face. A south polar region of the sphere is mapped onto the second circular projection face. At least one non-polar ring-shaped segment between the north polar region and the south polar region of the sphere is mapped onto said at least one rectangular projection face.
Abstract:
A video processing method includes: receiving an omnidirectional content corresponding to a sphere, obtaining projection faces from the omnidirectional content, and creating a projection-based frame by generating at least one padding region and packing the projection faces and said at least one padding region in a 360 VR projection layout. The projection faces packed in the 360 VR projection layout include a first projection face and a second projection face, where there is an image content discontinuity edge between the first projection face and the second projection face if the first projection face connects with the second projection face. The at least one padding region packed in the 360 VR projection layout includes a first padding region, where the first padding region connects with the first projection face and the second projection face for isolating the first projection face from the second projection face in the 360 VR projection layout.
Abstract:
A method for adaptively performing video decoding includes: performing decoding complexity management based upon parameter representing processing capability related to the adaptive complexity video decoder, in order to determine whether to reduce decoding complexity of at least one component of a plurality of components within an adaptive complexity video decoder; and selectively reducing decoding complexity of a portion of components within the adaptive complexity video decoder. An associated adaptive complexity video decoder and an associated adaptive audio/video playback system are also provided. In particular, the adaptive complexity video decoder includes a plurality of components and a decoding complexity manager. When needed, the decoding complexity manager delays audio playback of audio information.
Abstract:
A video processing method includes: receiving an omnidirectional image/video content corresponding to a viewing sphere, generating a sequence of projection-based frames according to the omnidirectional image/video content and a viewport-based cube projection layout, and encoding the sequence of projection-based frames to generate a bitstream. Each projection-based frame has a 360-degree image/video content represented by rectangular projection faces packed in the viewport-based cube projection layout. The rectangular projection faces include a first rectangular projection face, a second rectangular projection face, a third rectangular projection face, a fourth rectangular projection face, a fifth rectangular projection face, and a sixth rectangular projection face split into partial rectangular projection faces. The first rectangular projection face corresponds to user's viewport, and is enclosed by a surrounding area composed of the second rectangular projection face, the third rectangular projection face, the fourth rectangular projection face, the fifth rectangular projection face, and the partial rectangular projection faces.
Abstract:
A video encoding method includes: generating reconstructed blocks for coding blocks within a frame, respectively, wherein the frame has a 360-degree image content represented by projection faces arranged in a 360-degree Virtual Reality (360 VR) projection layout, and there is at least one image content discontinuity edge resulting from packing of the projection faces in the frame; and configuring at least one in-loop filter, such that the at least one in-loop filter does not apply in-loop filtering to reconstructed blocks located at the least one image content discontinuity edge.
Abstract:
A method for video coding a current block coded in an Inter, Merge, or Skip mode. The method determines neighboring blocks of the current block, wherein a motion vector predictor (MVP) candidate set is derived from MVP candidates associated with the neighboring blocks. The method determines at least one redundant MVP candidate, if said MVP candidate is within a same PU (Prediction Unit) as another MVP candidate in the MVP candidate set. The method removes said at least one redundant MVP candidate from the MVP candidate set, and provides a modified MVP candidate set for determining a final MVP, wherein the modified MVP candidate set corresponds to the MVP candidate set with said at least one redundant MVP candidate removed. Finally, the method encodes or decodes the current block according to the final MVP. A corresponding apparatus is also provided.
Abstract:
A method and apparatus for deriving a motion vector predictor (MVP) are disclosed. The MVP is selected from spatial MVP and temporalone or more MVP candidates. The method determines a value of a flag in a video bitstream, where the flag is utilized for selectively disabling use of one or more temporal MVP candidates for motion vector prediction. The method selects, based on an index derived from the video bitstream, the MVP from one or more non-temporal MVP candidates responsive to the flag indicating that said one or more temporal MVP candidates are not to be utilized for motion vector prediction. Further, the method provides the MVP for the current block.
Abstract:
Embodiments of the present invention identify a texture collocated block of a texture picture in the given view corresponding to a current depth block. A Merge candidate, or a motion vector predictor (MVP) or disparity vector predictor (DVP) candidate is derived from a candidate list including a texture candidate derived from motion information of the texture collocated block. Coding or decoding is then applied to the input data associated with the current depth block using the texture candidate if the texture candidate is selected as the Merge candidate in Merge mode or the texture candidate is selected as the MVP or DVP candidate in Inter mode.
Abstract:
A method of video coding utilizing ARP (advanced residual prediction) by explicitly signaling the temporal reference picture or deriving the temporal reference picture at the encoder and the decoder using identical process is disclosed. To encode or decode a current block in a current picture from a dependent view, a corresponding block in a reference view corresponding to the current block is determined based on a DV (disparity vector). For the encoder side, the temporal reference picture in the reference view of the corresponding block is explicitly signaled using syntax element(s) in the slice header or derived using an identical process as the decoder. For the decoder side, the temporal reference picture in the reference view of the corresponding block is determined according to the syntax element(s) in the slice header or derived using an identical process as the decoder. The temporal reference picture is then used for ARP.
Abstract:
A method and apparatus for performing hybrid multihypothesis prediction during video coding of a coding unit includes: processing a plurality of sub-coding units in the coding unit; and performing disparity vector (DV) derivation when the coding unit is processed by a 3D or multi-view coding tool or performing block vector (BV) derivation when the coding unit is processed by intra picture block copy (IntraBC) mode. The step of performing DV or BV derivation includes deriving a plurality of vectors for multihypothesis motion-compensated prediction of a specific sub-coding unit from at least one other sub-coding/coding unit. The one other sub-coding/coding unit is coded before the corresponding DV or BV is derived for multihypothesis motion-compensated prediction of the specific sub-coding unit. A linear combination of a plurality of pixel values derived from the plurality of vectors is used as a predicted pixel value of the specific sub-coding unit.