Abstract:
This disclosure describes methods, apparatus, and systems related to receiver identification. A device may identify a data frame received from a first device, the data frame including one or more data fields. The device may decode the one or more data fields in the identified data frame using tail biting decoding having an initial decode state and an end decode state. The device may determine the received data frame is intended for the device based at least in part on the decoded one or more data fields.
Abstract:
Various embodiments include an apparatus to be employed by an enhanced Node B (eNB), the apparatus comprising communication circuitry to receive, from a user equipment (UE), feedback information and control circuitry, coupled with the communication circuitry, to identify a codeword from a three-dimensional codebook based on the feedback information received from the UE, wherein the communication circuitry is further to precode data to be transmitted to the UE based on the codeword. An apparatus to be employed by a UE and additional methods are described.
Abstract:
Various embodiments include an apparatus to be employed by an enhanced Node B (eNB), the apparatus comprising communication circuitry to receive, from a user equipment (UE), feedback information and control circuitry, coupled with the communication circuitry, to identify a codeword from a three-dimensional codebook based on the feedback information received from the UE, wherein the communication circuitry is further to precode data to be transmitted to the UE based on the codeword. An apparatus to be employed by a UE and additional methods are described.
Abstract:
Techniques are described for compressing the PUCCH resources reserved for acknowledging downlink data transmissions when those resources are implicitly signaled by EPDCCHs that schedule the downlink transmissions in TDD mode. An acknowledgement resource offset field transmitted in the EPDCCH is configured to correspond to one or more values that compress the region in PUCCH resource index space that would otherwise be reserved for the subframes of a bundling window.
Abstract:
According UE is configured to receive a channel state information reference signal (CSI-RS) from an evolved Universal Terrestrial Radio Access Network (E-UTRAN) Node B (eNB), determine channel state information based on the CSI-RS, and send the channel state information to the eNB. The channel state information includes a precoding matrix indicator corresponding to a first precoding matrix. The UE is also configured to receive a UE specific reference (UE-RS) signal and a physical downlink shared channel (PDSCH) signal. The UE-RS is precoded with a second precoding matrix. The UE estimates a UE-RS effective channel including the second precoding matrix based on the UE-RS and decodes data from the PDSCH signal based on an the first precoding matrix and the UE-RS effective channel.