Abstract:
Some embodiments provide a device that stores a novel navigation application. The application in some embodiments includes a user interface (UI) that has a display area for displaying a two-dimensional (2D) navigation presentation or a three-dimensional (3D) navigation presentation. The UI includes a selectable 3D control for directing the program to transition between the 2D and 3D presentations.
Abstract:
Some embodiments of the invention provide a mobile device with a novel route prediction engine that (1) can formulate predictions about current or future destinations and/or routes to such destinations for the device's user, and (2) can relay information to the user about these predictions. In some embodiments, this engine includes a machine-learning engine that facilitates the formulation of predicted future destinations and/or future routes to destinations based on stored, user-specific data. The user-specific data is different in different embodiments. In some embodiments, the stored, user-specific data includes data about any combination of the following (1) previous destinations traveled to by the user, (2) previous routes taken by the user, (3) locations of calendared events in the user's calendar, (4) locations of events for which the user has electronic tickets, and (5) addresses parsed from recent e-mails and/or messages sent to the user. The device's prediction engine only relies on user-specific data stored on the device in some embodiments, relies only on user-specific data stored outside of the device by external devices/servers in other embodiments, and relies on user-specific data stored both by the device and by other devices/servers in other embodiments.
Abstract:
A mobile computing device can be used to locate a vehicle parking location. In particular, the mobile device can automatically identify when a vehicle in which the mobile device is located has entered into a parked state. The mobile device can determine that the vehicle is in a parked state by analyzing one or more parameters that indicate a parked state or a transit state. The location of the mobile device at a time corresponding to when the vehicle is identified as being parked can be associated with an identifier for the current parking location.
Abstract:
Techniques and systems for centralized access to multimedia content stored on or available to a computing device are disclosed. The centralized access can be provided by a media control interface that receives user inputs and interacts with media programs resident on the computing device to produce graphical user interfaces that can be presented on a display device.
Abstract:
A device with a touch-sensitive display may be unlocked via gestures performed on the touch-sensitive display. The device is unlocked if contact with the display corresponds to a predefined gesture for unlocking the device. The device displays one or more unlock images with respect to which the predefined gesture is to be performed in order to unlock the device. The performance of the predefined gesture with respect to the unlock image may include moving the unlock image to a predefined location and/or moving the unlock image along a predefined path. The device may also display visual cues of the predefined gesture on the touch screen to remind a user of the gesture.
Abstract:
Auto-completion techniques are provided. In some embodiments, a multimedia object can be determined based upon a received textual input. A displayable representation of the multimedia object can be provided as an auto-complete suggestion. In response to user selection of the displayable representation, the received textual input can be replaced with a representation that enables the multimedia object to be accessed. In some embodiments, a mathematical operation can be performed based upon the received textual input. The result of the operation can be provided as an auto-complete suggestion. In response to user selection of the suggestion, the received textual input can be replaced with the result of the mathematical calculation.
Abstract:
A method of providing navigation instructions in a locked mode of a device is disclosed. The method, while the display screen of the device is turned off, determines that the device is near a navigation point. The method turns on the display screen and provides navigation instructions. In some embodiments, the method identifies the ambient light level around the device and turns on the display at brightness level determined by the identified ambient light level. The method turns off the display after the navigation point is passed.
Abstract:
Some embodiments provide a navigation application. The navigation application includes an interface for receiving data describing junctures along a route from a first location to a second location. The data for each juncture comprises a set of angles at which roads leave the juncture. The navigation application includes a juncture simplifier for simplifying the angles for the received junctures. The navigation application includes an arrow generator for generating at least two different representations of the simplified juncture. The representations are for use in displaying navigation information describing a maneuver to perform at the juncture during the route. The navigation application includes an arrow selector for selecting one of the different representations of the simplified juncture for display according to a context in which the representation will be displayed.
Abstract:
A device that includes at least one processing unit and stores a multi-mode mapping program for execution by the at least one processing unit is described. The program includes a user interface (UI). The UI includes a display area for displaying a two-dimensional (2D) presentation of a map or a three-dimensional (3D) presentation of the map. The UI includes a selectable 3D control for directing the program to transition between the 2D and 3D presentations.
Abstract:
For a mapping application, a method for reporting a problem related to a map displayed by the mapping application is described. The method identifies a mode in which the mapping application is operating. The method identifies a set of types of problems to report based on the identified mode. The method displays, in a display area of the mapping application, a graphical user interface (GUI) page that includes a set of selectable user interface (UI) items that represent the identified set of types of problems.