Abstract:
Disclosed is a pyroelectric detector with significantly reduced microphonic noise sensitivity that includes a pyroelectric detector element constructed from a z-cut LiNbO3 or LiTaO3 electret. Selective domain reversal is accomplished in the electret by applying an electric field. Electrodes are attached to either surface of the electret spanning the domain reversed region and a portion of the original domain region to create areas of equal and opposite sensitivity. The detector is mounted in an electrically grounded container or housing. The detector may also be constructed having multiple detector regions to accommodate resonant acoustic frequencies of the electret, to function as a position sensor, or both. In other words, the position sensor has multiple domain regions that also accommodate acoustic frequencies. The detector may also be constructed having domain reversed regions placed on the electret in a periodic pattern having a geometry and spacing that is related to the acoustic impulse response of the electret. Needle domains may also be interspersed in portions or throughout the electret to scatter acoustic waves and thereby reduce acoustic noise. Multiple detectors can be produced in a simple and inexpensive manner using shadow masking techniques.
Abstract:
A non-dither spatio-temporal low pass filter method for compensating non-uniformity of the responses of detector elements of an infrared detector array. The methods can be used for one-dimensional scanning arrays and for two-dimensional staring arrays. (FIGS. 3 and 6). First it is determined whether the scene and the detector array have sufficient relative motion for use of a spatio-temporal low pass filter type non-uniformity compensation (NUC) algorithm. If so the NUC algorithm is applied, which recursively uses both spatial and temporal information from near neighbors as a basis to correct fixed pattern noise on the detector array.
Abstract:
An apparatus (20) for performing a temperature measurement function is proposed. It comprises a first circuit (11) and a second circuit (12). The first circuit (11) has a transistor (M1), a resistor (Rtemp), and a parallel arrangement of n diodes (B1-Bn). The second circuit (12) comprises a transistor (M2) and a parallel arrangement of m diodes (C2). An operational amplifier (13) is on the input side being connected to the first circuit (11) and the second circuit (12). This operational amplifier (13) provides a gate voltage for the transistors (M1, M2). There is an output stage with p output transistors (N1-Np), and an output resistor (r*Rtemp). The output stage performs a current to output voltage conversion in order to provide an output voltage (Vtempout) that depends on the actual temperature (T).
Abstract:
A device (10) for continuous measurement of the temperature of molten metal in a furnace or recipient for its production and treatment comprises a heat analysis instrument (14) placed in a lance (12) which blows inert gas and/or high-pressure compressed air against a surface of metal slag (18) of a furnace or recipient (20).
Abstract:
Remote sensing of the temperature of a greybody or blackbody radiator is effected by passing its radiation (24) through a modulated infrared filter spectrometer. The infrared filter comprises, in sequence, a band pass filter (20), a first polariser (21) which polarises the radiation, an electro-optical element (22) which splits the polarised radiation into two orthogonally polarised components, and a second polariser (23). A lens (28) images the radiation leaving the second polariser onto a detector (27). The electrical signal from the detector (27) is input to a numerical analyser. The electro-optical element (22), typically comprising a birefringent crystal assembly (25) and a birefringent trim plate (26), is configured so that the net optical delay of the orthogonally polarised components passed through it is such that the recombined components are at or near a peak or trough in their interferogram. A sinusoidally varying voltage is applied to the electro-optical element to modulate the net delay of the components passed through the electro-optical element. The numerical analyser is programmed to compute the harmonic amplitude ratio (the ratio of signal amplitudes at the fundamental and second harmonic of the frequency of the modulating voltage) of the signal that it receives from the detector (27). The harmonic amplitude ratio is a function of the temperature of the radiator, which can be estimated by reference to a calibration look-up table.
Abstract:
A first thermistor 8 and a second thermistor 9 are arranged forwardly and rearwardly of a thermopile sensor 5. A thermopile chip 55 is arranged and interposed between the first thermistor 8 and an integrated thermistor 57. A sensor cover is mounted in contact with front and side portions of a can portion 59 of a thermopile casing 56. A temperature or a radiant quantity of infrared rays on the front portion of the can portion is estimated from a temperature change of the integrated thermistor per second.
Abstract:
An infrared (IR) imaging system in accordance with the present invention includes a substrate, a plurality of disc-shaped microbolometer pixels that combined to define a Focal Plane Array. Each pixel is electrically connected to the substrate with a pair of opposing helical isolation legs. One end of the isolation leg is attached to the pixels periphery while the other is fixed to that substrate so that the FPA and a plane containing the substrate have a parallel, spaced-apart relationship. In this manner, the isolation leg(s) provides an electrical communication path from each pixel to the substrate as each pixel undergoes an internal change in resistance due to absorption of IR energy. At the same time, the legs separate the pixels from the substrate so that there is no heat transfer between the pixel and the substrate due to direct contact. The disc shape arrangement allows for a staggered arrangement of adjacent rows in the array, thereby increasing the fill factor for the FPA of the device.
Abstract:
Systems and methods for microbolometer focal plane arrays are disclosed. For example, in accordance with an embodiment of the present invention, microbolometer focal plane array circuitry is disclosed for a microbolometer array having shared contacts between adjacent microbolometers. Various techniques may be applied to compensate for non-uniformities, such as for example, to allow operation over a calibrated temperature range.
Abstract:
An IR detector for use in an array of detectors is provided with better thermal resolution resulting in increased range and increased contrast for a standard 30 frame per second frame rate includes a support structure for the detector made from thermoelectric material supports which transports heat away from the detecting material during each readout cycle just after the instantaneous reading has been made. By removing heat thermoelectrically from the detector, detector sensitivity is improved, higher frame rates are achievable and an improved fill factor is the result of being able to more closely pack the detector elements.