Abstract:
An acoustic or ultrasonic device includes two ultrasonic energy transmission paths having substantially identical transmission characteristics for a neutral condition of the device. One or both of the transmission paths include path altering structure(s) or coating(s) for changing the transmission characteristics of one or both of the paths in response to a physical phenomenon to be sensed or monitored. The paths have input transducers coupled thereto for transmitting ultrasonic energy into the paths. The input transducers are driven by a single oscillator such that the ultrasonic energy waves generated in the two paths are substantially identical to one another. A drive adjusting circuit compensates for any differences between the two paths and/or the ultrasonic waves in the two paths. An output transducer is coupled to the two paths for receiving ultrasonic waves from the paths and generating an output signal which is the result of combining the acoustic or ultrasonic waves from the two paths. By combining the waves from the two paths, the output signal is effectively the interference pattern generated by the waves in the two paths and hence the device operates as an acoustic or ultrasonic energy interferometer to sense or monitor physical phenomena to which the path altering structure(s) or coating(s) respond.
Abstract:
This invention relates to a tactile sensor that is particularly suitable for use in robotics. The tactile sensor enables a robot, cybernetic device, or other appropriate automatic mechanism to sense an object, to measure the force of contact, and to determine the force necessary to seize the object. Acoustic surface waves propagated along the surface of an insulating plate within the sensor, and disrupted by contact with the sensor, are used to achieve this purpose.
Abstract:
The invention provides a sensor comprising a plate resting on two supports by simply bearing thereon, for creating in said plate uniform bending stresses in a defined zone of said plate. Detector means for detecting the stresses undergone by said plate may be placed in said zone without their location being defined with precision.
Abstract:
An acoustic surface wave oscillator is employed as a forcesensing device. Dual acoustic surface wave oscillators coupled to a single substrate of piezoelectric material which inversely change their respective frequencies in response to a force applied normal to the surface of the substrate comprise a highsensitivity, temperature-compensated force-sensing device. The outputs of the oscillators are applied to an electronic mixer circuit to produce a difference frequency output signal which is a function of the applied force. Other configurations utilizing the force-sensing properties of acoustic surface wave oscillators are disclosed.
Abstract:
Transducer devices employing relative changes in the acoustic propagation characteristics of Rayleigh waves flowing along polished surfaces of a thin elastic member yield a measure of the degree of flexing or surface strain of an elastic member. Stable signal processing and excitation circuits supply outputs proportional to strain, free of mode locking and other spurious interactions of the oscillatory circuits that include the surface wave delay elements.